In this activity, students learn about the urban heat island effect by investigating which areas of their schoolyard have higher temperatures - trees, grass, asphalt, and other materials. Based on their results, they hypothesize how concentrations of surfaces that absorb heat might affect the temperature in cities - the urban heat island effect. Then they analyze data about the history of Los Angeles heat waves and look for patterns in the Los Angeles climate data and explore patterns.

In this video, a PhD Student from the University of Maine explains how ice cores are used to study global climate change.

In this activity, students calculate temperatures during a time in the geologic record when rapid warming occurred using a well known method called 'leaf-margin analysis.' Students determine the percentage of the species that have leaves with smooth edges, as opposed to toothed, or jagged, edges. Facsimiles of fossil leaves from two collection sites are examined, categorized, and the data is plugged into an equation to provide an estimate of paleotemperature for two sites in the Bighorn Basin. It also introduces students to a Smithsonian scientist who worked on the excavation sites and did the analysis.

Data-centric activity where students explore the connections between an observable change in the cryosphere and its potential impact in the hydrosphere and atmosphere. Students analyze the melt extents on the Greenland ice sheet from 1992-2003. Students also learn about how scientists collect the data.

Students consider why the observed atmospheric CO2 increase rate is only ~60% of the CO2 loading rate due to fossil fuel combustion. They develop a box-model to simulate the atmospheric CO2 increase during the industrial era and compare it to the historic observations of atmospheric CO2 concentrations. The model is then used to forecast future concentrations of atmospheric CO2 during the next century.

This is a teaching activity in which students learn about the connection between CO2 emissionS, CO2 concentration, and average global temperatures. Through a simple online model, students learn about the relationship between these and learn about climate modeling while predicting temperature change over the 21st century.

This video discusses the social and economic impacts (worldwide and in the US) of sea level rise caused by global warming (aired April 1, 2011).
Note: you may need to scroll down the Changing Planet video page to get to this video.

This set of activities is about carbon sources, sinks, and fluxes among them - both with and without anthropogenic components.

This short video describes how the compression of Antarctic snow into ice captures air from past atmospheres. It shows how ice cores are drilled from the Antarctic ice and prepared for shipment and subsequent analysis.

This short video features the Alaska Lake Ice and Snow Observatory Network (ALISON project), a citizen science program in which 4th and 5th graders help scientists study the relationship between climate change and lake ice and snow conditions.

Pages