In this activity, students explore the way that human activities have changed the way that carbon is distributed in Earth's atmosphere, lithosphere, biosphere and hydrosphere.

This short video from NASA discusses the role that salinity plays in Earth's climate and ocean circulation, focusing on the observations of the Aquarius satellite.

This short cartoon video uses a simple baseball analogy (steroid use increases probability of hitting home runs) to explain how small increases in greenhouse gases can cause global temperature changes and increase the probability of extreme weather events.

This is a video that discusses how climate feedbacks influence global warming.

In this video segment, a team of scientists seeks evidence to support their hypothesis that atmospheric warming may cause water to form beneath the West Antarctic ice sheet. This water causes ice streams to flow much more quickly than the rest of the ice sheet, which has important implications for sea level rise.

This brief, hands-on activity illustrates the different heating capacities of soil and water in order to understand why places near the sea have a more moderate climate than those inland.

In this activity, students are guided through the process of locating and graphing web-based environmental data that has been collected by GLOBE Program participants using actual data collected by students in Pennsylvania and comparing them to their local climatic boundary conditions. This activity highlights the opportunities for using GLOBE data to introduce basic concepts of Earth system science.

This 3-activity sequence addresses the question: "To what extent should coastal communities build or rebuild?" The activity uses social science and geoscience data to prepare an evidence-based response to the question, in targeted US coastal communities.

This activity covers the role that the oceans may play in climate change and how climate change may affect the oceans. It is lesson 8 in a nine-lesson module Visualizing and Understanding the Science of Climate Change.

This map shows the pattern of thermohaline circulation. This collection of currents is responsible for the large-scale exchange of water masses in the ocean, including providing oxygen to the deep ocean. The entire circulation pattern takes ~2000 years.

Pages