In this activity for undergraduates, students explore the CLIMAP (Climate: Long-Range Investigation, Mapping and Prediction) model results for differences between the modern and the Last Glacial Maximum (LGM) and discover the how climate and vegetation may have changed in different regions of the Earth based on scientific data.

This animation allows students to explore the infrared spectra of greenhouse gases and depict the absorption spectra. Vibrational modes and Earth's energy spectrum can also be overlaid.

This is a classroom activity about the forcing mechanisms for the most recent cold period: the Little Ice Age (1350-1850). Students receive data about tree ring records, solar activity, and volcanic eruptions during this time period. By comparing and contrasting time intervals when tree growth was at a minimum, solar activity was low, and major volcanic eruptions occurred, they draw conclusions about possible natural causes of climate change and identify factors that may indicate climate change.

In this activity, students explore the role of combustion in the carbon cycle. They learn that carbon flows among reservoirs on Earth through processes such as respiration, photosynthesis, combustion, and decomposition, and that combustion of fossil fuels is causing an imbalance. This activity is one in a series of 9 activities.

Video presents a broad overview of what (NASA) satellites can tell us about how climate change is affecting oceans.

This 3-activity sequence addresses the question: "To what extent should coastal communities build or rebuild?" The activity uses social science and geoscience data to prepare an evidence-based response to the question, in targeted US coastal communities.

This static graph of changes in CO2 concentrations goes back 400,000 years, showing the dramatic spike in recent years.

In this activity, students use a set of photographs and a 3-minute video on weather to investigate extreme weather events. They are posed with a series of questions that ask them to identify conditions predictive of these events, and record them on a worksheet. Climate and weather concepts are defined.

This is a long-term inquiry activity in which students investigate locations they believe harbor cellulose-digesting microbes, collect samples, isolate them on selective media, and screen them for cellulase activity. These novel microbes may be useful for the production of cellulosic ethanol. In the process they learn about plating techniques, serial dilutions, symbiotic relationships and enzyme specificity. Two methods are provided, one focusing on isolation of pure microbial strains, the other focusing on finding symbiotic communities of microbes.

In this Earth Exploration Toolbook chapter, students select, explore, and analyze satellite imagery. They do so in the context of a case study of the origins of atmospheric carbon monoxide and aerosols, tiny solid airborne particles such as smoke from forest fires and dust from desert wind storms. They use the software tool ImageJ to animate a year of monthly images of aerosol data and then compare the animation to one created for monthly images of carbon monoxide data. Students select, explore, and analyze satellite imagery using NASA Earth Observatory (NEO) satellite data and NEO Image Composite Explorer (ICE) tool to investigate seasonal and geographic patterns and variations in concentration of CO and aerosols in the atmosphere.

Pages