This is a short NASA video on the water cycle. The video shows the importance of the water cycle to nearly every natural process on Earth and illustrates how tightly coupled the water cycle is to climate.

In this activity, students graph and analyze methane data, extracted from an ice core, to examine how atmospheric methane has changed over the past 109,000 years in a case study format. Calculating the rate of change of modern methane concentrations, they compare the radiative forcing of methane and carbon dioxide and make predictions about the future, based on what they have learned from the data and man's role in that future.

In this activity, students learn how to read, analyze, and construct climographs. These climographs are a graphic way of displaying monthly average temperature and precipitation. Students also practice matching climographs to various locations and summarize global-scale climate patterns revealed by comparing climographs.

This activity is a greenhouse-effect-in-a-bottle experiment. The lesson includes readings from NEED.org and an inquiry lab measuring the effect of carbon dioxide and temperature change in an enclosed environment.

This short animated video provides a general overview of the role of carbon dioxide in supporting the Greenhouse Effect.

In this activity for undergraduate students, learners build a highly simplified computer model of thermohaline circulation (THC) in the North Atlantic Ocean and conduct a set of simulation experiments to understand the complex dynamics inherent in this simple model.

In this activity, students examine the effects of hurricanes on sea surface temperature using NASA data. They examine authentic sea surface temperature data to explore how hurricanes extract heat energy from the ocean surface.

The NOAA Ocean Service Education lab requires students create and manipulate solutions simulating different ocean water characteristics in order to recognize that the effects of salinity and temperature are the drivers of thermohaline circulation.

This video, from Yale Climate Connections, explores the 2014 melting of the West Antarctic ice sheet that captured headlines. Interviews, animations, and news broadcasts explore what the melting meant for both the future of some of the Antarctic glaciers and sea level rise, and informs the viewer how seafloor terrain influences the speed of ice sheet melt.

This video addresses two ways in which black carbon contributes to global warming - when in the atmosphere, it absorbs sunlight and generates heat, warming the air; when deposited on snow and ice, it changes the albedo of the surface. The video is effective in communicating about a problem frequently underrepresented in discussions of climate change and also public health.

Pages