This is a classroom activity about the forcing mechanisms for the most recent cold period: the Little Ice Age (1350-1850). Students receive data about tree ring records, solar activity, and volcanic eruptions during this time period. By comparing and contrasting time intervals when tree growth was at a minimum, solar activity was low, and major volcanic eruptions occurred, they draw conclusions about possible natural causes of climate change and identify factors that may indicate climate change.

This video introduces the concept of daylighting - the use of windows or skylights for natural lighting and temperature regulation - and how it is one building strategy that can save operating costs for homeowners and businesses.

This video segment, from the 'Earth: The Operators' Manual' featuring climate expert Richard Alley, shows how ice cores stored at the National Ice Core Lab provide evidence that ancient ice contains records of Earth's past climate - specifically carbon dioxide and temperature.

In this worksheet-based activity, students review global visualizations of incoming sunlight and surface temperature and discuss seasonal change. Students use the visualizations to support inquiry on the differences in seasonal change in the Northern and Southern Hemispheres and how land and water absorb and release heat differently. The activity culminates in an argument about why one hemisphere experiences warmer summers although it receives less total solar energy.

A computer animation on the reason for the seasons. Voice-over describes the motion of Earth around the sun to show how the sun's light impacts the tilted Earth at different times of the year, causing seasonal changes.

In this activity, students assume the role of a team of architects that has been commissioned to build a solar house containing both active and passive solar components. First, they must design the house and then build a model. The model is tested to determine how well it utilizes solar energy.

This NOAA visualization video on YouTube shows the seasonal variations in sea surface temperatures and ice cover for the 22 years prior to 2007 based on data collected by NOAA polar-orbiting satellites (POES). El NiÃo and La NiÃa are easily identified, as are the trends in decreasing polar sea ice.

This image depicts a representative subset of the atmospheric processes related to aerosol lifecycles, cloud lifecycles, and aerosol-cloud-precipitation interactions that must be understood to improve future climate predictions.

This is a short NASA video on the water cycle. The video shows the importance of the water cycle to nearly every natural process on Earth and illustrates how tightly coupled the water cycle is to climate.

In this activity, students learn the basics of photosynthesis and respiration within the carbon cycle. Students are assigned to be different atoms or energy and interact with each other by linking together to form molecules and absorb or release energy.

Pages