c. The amount of solar energy absorbed or radiated by Earth is modulated by the atmosphere and depends on its composition. Greenhouse gases— such as water vapor, carbon dioxide, and methane— occur naturally in small amounts and absorb and release heat energy more efficiently than abundant atmospheric gases like nitrogen and oxygen. Small increases in carbon dioxide concentration have a large effect on the climate system.

In this video, students learn that scientific evidence strongly suggests that different regions on Earth do not respond equally to increased temperatures. Ice-covered regions appear to be particularly sensitive to even small changes in global temperature. This video segment adapted from NASA's Goddard Space Flight Center details how global warming may already be responsible for a significant reduction in glacial ice, which may in turn have significant consequences for the planet.

This is the seventh of nine lessons in the 'Visualizing and Understanding the Science of Climate Change' website. This lesson addresses climate feedback loops and how these loops help drive and regulate Earth's unique climate system.

This lesson covers different aspects of the major greenhouse gases - water vapor, carbon dioxide, methane, nitrous oxides and CFCs - including some of the ways in which human activities are affecting the atmospheric concentrations of these key greenhouse gases. This is lesson six in a nine-lesson module about climate change.

In this activity students learn how Earth's energy balance is regulating climate. This activity is lesson 4 in the nine-lesson module Visualizing and Understanding the Science of Climate Change.

This short animated video provides a general overview of the role of carbon dioxide in supporting the Greenhouse Effect.

This video highlights the work of climate scientists in the Amazon who research the relationship between deforestation, construction of new dams, and increased amounts of greenhouse gases being exchanged between the biosphere and the atmosphere.

This video examines the thawing of permafrost due to changes in climate and shows examples of the impacts that warming temperatures have on permafrost in the Arctic, including the release of the greenhouse gas methane. Dramatic results are shown, including sink holes forming on the landscape and beneath buildings, roads, and other infrastructure, causing some communities to relocate.

Pages