This color-coded map displays a progression of changing five-year average global surface temperatures anomalies from 1880 through 2010. The final frame represents global temperature anomalies averaged from 2006 to 2010. The temperature anomalies are computed relative to the base period 1951-1980.

This simulation allows students to explore the change in sea surface pH levels with increasing CO2 levels.

This lesson is an investigation of the impact of climate change on the phenology of a variety of taxa, including migrating birds and hibernating animals in the Colorado Rockies. Students analyze 40 years of data collected by Billy Barr from the Rocky Mountain Biological Laboratory.

This is a graph of marine air temperature anomalies over the past 150 years. Five different marine air temperature anomaly datasets from different sources are compared on the one graph.

In this video, a team of paleontologists, paleobotanists, soil scientists, and other researchers take to the field in Wyoming's Bighorn Basin to document how the climate, plants, and animals there changed during the Paleocene- Eocene Thermal Maximum (PETM) when a sudden, enormous influx of carbon flooded the ocean and atmosphere for reasons that are still unclear to scientists. The PTEM is used as an analog to the current warming occurring. The scientists' research may help inform our understanding of current increases in carbon in the atmosphere and ocean and the resulting impact on ecosystems. Supporting materials include essay and interactive overview of animals that existed in the Basin after the PETM event.

This is a figure from the 2007 IPCC Assessment Report 4 on atmospheric concentrations of carbon dioxide, methane and nitrous oxide over the last 10,000 years (large panels) and since 1750 (inset panels).

In this activity, students examine the effects of hurricanes on sea surface temperature using NASA data. They examine authentic sea surface temperature data to explore how hurricanes extract heat energy from the ocean surface.

This well-designed experiment compares CO2 impacts on salt water and fresh water. In a short demonstration, students examine how distilled water (i.e., pure water without any dissolved ions or compounds) and seawater are affected differently by increasing carbon dioxide in the air.

This activity develops student understanding of the relationship of weather and climate. Students use interview techniques to explore perceptions about local climate change among long-time residents of their community. Students then compare the results of their interviews to long term local temperature and precipitation records.

In this activity, students learn how to read, analyze, and construct climographs. These climographs are a graphic way of displaying monthly average temperature and precipitation. Students also practice matching climographs to various locations and summarize global-scale climate patterns revealed by comparing climographs.

Pages