This video features University of Wisconsin-Madison researcher John Magnuson, who studies the ecology of freshwater systems. He explains the difference between weather and climate using data on ice cover from Lake Mendota in Madison, WI. Analysis of the data indicates a long-term trend that can be connected to climate change.

In this video, students see how data from the ice core record is used to help scientists predict the future of our climate. Video features ice cores extracted from the WAIS Divide, a research station on the West Antarctic Ice Sheet.

This visualization graphically displays temperature and CO2 concentration in the atmosphere as derived from ice core data from 400,000 years ago to 1950. The data originates from UNEP GRID Arendal's graphic library of CO2 levels from Vostok ice core.

In this activity, students examine climate variability in the North Atlantic associated with the North Atlantic Oscillation (NOA) in a case study format.

This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2016, and then back in time to 800,000 years before the present.

This video illustrates how atmospheric particles, or aerosols (such as black carbon, sulfates, dust, fog), can affect the energy balance of Earth regionally, and the implications for surface temperature warming and cooling.

Hands-on laboratory activity that allows students to investigate the effects of distance and angle on the input of solar radiation at Earth's surface, the role played by albedo, the heat capacity of land and water, and how these cause the seasons. Students predict radiative heating based on simple geometry and experiment to test their hypotheses.

This static graph of changes in CO2 concentrations goes back 400,000 years, showing the dramatic spike in recent years.

This animated visualization of precession, eccentricity, and obliquity is simple and straightforward and provides text explanations. It is a good starting place to show Milankovitch cycles.

This classroom activity is aimed at an understanding of different ecosystems by understanding the influence of temperature and precipitation. Students correlate graphs of vegetation vigor with those of temperature and precipitation data for four diverse ecosystems, ranging from near-equatorial to polar, and spanning both hemispheres to determine which climatic factor is limiting growth.

Pages