This hands-on activity explores the driving forces behind global thermohaline circulation.

In this activity, students collect weather data over several days or weeks, graph temperature data, and compare the temperature data collected with long-term climate averages from where they live. Understanding the difference between weather and climate and interpreting local weather data are important first steps to understanding larger-scale global climate changes.

This video describes how the normal thousands-of-years-long balance of new ice creation and melting due to ocean currents has been disrupted recently by warmer ocean currents. As a result, glacier tongues that overhang the interface between ice and ocean are breaking off and falling into the ocean.

This animated visualization was created for the planetarium film 'Dynamic Earth'. It illustrates the trail of energy that flows from atmospheric wind currents to ocean currents.

This is a basic animation/simulation with background information about the greenhouse effect by DAMOCLES. The animation has several layers to it that allow users to drill into more detail about the natural greenhouse effect and different aspects of it, including volcanic aerosols and human impacts from burning fossil fuels.

In this lab activity, students use a chemical indicator (bromothymol blue) to detect the presence of carbon dioxide in animal and plant respiration and in the burning of fossil fuels and its absence in the products of plant photosynthesis. After completing the five parts of this activity, students compare the colors of the chemical indicator in each part and interpret the results in terms of the qualitative importance of carbon sinks and sources.

This interactive visualization depicts sea surface temperatures (SST) and SST anomalies from 1885 to 2007. Learn all about SST and why SST data are highly valuable to ocean and atmospheric scientists. Understand the difference between what actual SST readings can reveal about local weather conditions and how variations from normalâcalled anomaliesâcan help scientists identify warming and cooling trends and make predictions about the effects of global climate change. Discover the relationships between SST and marine life, sea ice formation, local and global weather events, and sea level.

This video highlights research conducted at Woods Hole on how heat absorbed by the ocean and changes of ocean chemistry from human activities could lead to a tipping point for marine life and ecosystems. Includes ice bath experiment that models the tipping point of Arctic sea ice.

In this classroom activity, students analyze visualizations and graphs that show the annual cycle of plant growth and decline. They explore patterns of annual change for the globe and several regions in each hemisphere that have different land cover and will match graphs that show annual green-up and green-down patterns with a specific land cover type.

In this Webquest activity, students assume roles of scientist, business leader, or policy maker. The students then collaborate as part of a climate action team and learn how society and the environment might be impacted by global warming. They explore the decision making process regarding issues of climate change, energy use, and available policy options. Student teams investigate how and why climate is changing and how humans may have contributed to these changes. Upon completion of their individual tasks, student teams present their findings and make recommendations that address the situation.