This animation depicts real-time wind speed and direction at selected heights above Earth's surface, ocean surface currents, and ocean surface temperatures and anomalies.

This three-panel figure is an infographic showing how carbon and oxygen isotope ratios, temperature, and carbonate sediments have changed during the Palaeocene-Eocene Thermal Maximum. The figure caption provides sources to scientific articles from which this data was derived. A graphic visualization from the Intergovernmental Panel on Climate Change shows the rapid decrease in carbon isotope ratios that is indicative of a large increase in the atmospheric greenhouse gases CO2 and CH4, which was coincident with approximately 5C of global warming.

This activity introduces students to different forms of energy, energy transformations, energy storage, and the flow of energy through systems. Students learn that most energy can be traced back to nuclear fusion on the sun.

This is an interactive table with a comprehensive list of 29 greenhouse gases, their molecular structures, a chart showing a time series of their atmospheric concentrations (at several sampling sites), their global warming potential (GWP) and their atmospheric lifetimes. References are given to the data sets that range from the mid-1990s to 2008.

In this activity, students use a physical model to learn the basics of photosynthesis and respiration within the carbon cycle.

This video segment, from the 'Earth: The Operators' Manual' featuring climate expert Richard Alley, shows how ice cores stored at the National Ice Core Lab provide evidence that ancient ice contains records of Earth's past climate - specifically carbon dioxide and temperature.

In this experiment, students observe a natural process that removes carbon dioxide (CO2) from Earth's atmosphere. This process is a part of the carbon cycle and results in temperature suitable for life. Students learn that the carbon cycle is a fundamental Earth process. Throughout Earth's history, the balance of carbon has kept the atmosphere's carbon dioxide (CO2) and Earth's temperature within relatively narrow ranges.

In this series of activities students investigate the effects of black carbon on snow and ice melt in the Arctic. The lesson begins with an activity that introduces students to the concept of thermal energy and how light and dark surfaces reflect and absorb radiant energy differently. To help quantify the relationship between carbon
and ice melt, the wet lab activity has students create ice samples both with and without black carbon and then compare how they respond to radiant energy while considering implications for the Arctic.

This video describes the foundation Plant for the Planet, a foundation created by a 9-year-old German boy, Felix. This foundation has planted more than 500,000 trees in Germany, which he says help sequester carbon and reduce greenhouse gas emissions. The student rallies, first his community and then other children, to plant millions of trees to offset our energy-use emissions.

Students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.

Pages