In this series of activities students investigate the effects of black carbon on snow and ice melt in the Arctic. The lesson begins with an activity that introduces students to the concept of thermal energy and how light and dark surfaces reflect and absorb radiant energy differently. To help quantify the relationship between carbon
and ice melt, the wet lab activity has students create ice samples both with and without black carbon and then compare how they respond to radiant energy while considering implications for the Arctic.

This short video from NASA discusses the role that salinity plays in Earth's climate and ocean circulation, focusing on the observations of the Aquarius satellite.

This animated visualization represents a time history of atmospheric carbon dioxide in parts per million (ppm) from 1979 to 2016, and then back in time to 800,000 years before the present.

This video features residents of Shishmaref, Alaska, plus environmental journalist Elizabeth Kolbert and scientist John Holdren, exploring the human impacts of global climate change.

This video is accompanied by supporting materials including background essay and discussion questions. The focus is on changes happening to permafrost in the Arctic landscape, with Alaska Native peoples and Western scientists discussing both the causes of thawing and its impact on the ecosystem. The video shows the consequences of erosion, including mudslides and inland lakes being drained of water. An Inuit expresses his uncertainty about the ultimate effect this will have on his community and culture.

This Changing Planet video documents scientists' concerns regarding how melting Arctic sea ice will increase the amount of fresh water in the Beaufort Gyre, which could spill out into the Atlantic and cause major climate shifts in North America and Western Europe. The video includes interviews with scientists and a look at the basics of how scientists measure salinity in the ocean and how ocean circulation works in the Arctic.

This color-coded map displays a progression of changing five-year average global surface temperatures anomalies from 1880 through 2010. The final frame represents global temperature anomalies averaged from 2006 to 2010. The temperature anomalies are computed relative to the base period 1951-1980.

This short video, is the fifth in the National Academies Climate Change, Lines of Evidence series. It focuses on greenhouse gases, climate forcing (natural and human-caused), and global energy balance.

In this activity, students use the GLOBE Student Data Archive and visualizations to explore changes in regional and seasonal temperature patterns.

This video from ClimateCentral looks at the way climate conditions can affect vegetation in the West, and what influence this has on wildfires. Drought and rainfall can have very different wildfire outcomes, depending on vegetation type, extent, and location.

Pages