June 22, 2017

How much do ENSO blog writers like marine-based observations? Enough for one of them to write a love letter to a buoy. 

This is a real-time map of current drought conditions in the US, which can be zoomed to the state level, with access to many more resources at that level. Some of these include the National Drought Regional Summaries and animations of historical data.

The Greenland 2014: Follow the Water video is about Greenland's ice sheet, accompanied by computer models of the same, to show how the ice is melting, where the meltwater is going, and what it is doing both on the surface and beneath the ice.

In this 6-part activity, students learn about climate change during the Cenozoic and the abrupt changes at the Cretaceous/Paleogene boundary (65.5 million years ago), the Eocene/Oligocene boundary (33.9 million years ago), and the Paleocene/Eocene boundary (55.8 million years ago).

This video features scientists in New Zealand's Southern Alps, examining samples from the rocky landscape once dominated by glaciers. Their research, combined with other climate records, has revealed a link between glacial retreat and rising levels of carbon dioxide in the air.

This short animation compares graphs of the natural variation in the sun's energy striking the upper atmosphere vs global surface temperature over a 30-year period to make the point that natural variations do not account for the rising trend line in surface temperatures.

This static graph of changes in CO2 concentrations goes back 400,000 years, showing the dramatic spike in recent years.

In this activity, students conduct a short hands-on demonstration that simulates ocean acidification resulting from excess atmospheric carbon dioxide and discuss potential implications of increases in ocean temperatures and acidification due to climate change.

In this activity, students are guided through graphs of surface air temperature anomaly data and Vostok ice core data to illustrate how scientists use these data to develop the basis for modeling how climate is likely to change in the future.

This activity uses two interactive simulations to illustrate climate change, 1) at the micro/molecular level - modeling the impact of increasing concentrations of greenhouse gases in the atmosphere on surface temperature and 2) at the macro level - modeling changes in glacier thickness and flow as a result of rising surface temperature.

Pages