This activity covers the role that the oceans may play in climate change and how climate change may affect the oceans. It is lesson 8 in a nine-lesson module Visualizing and Understanding the Science of Climate Change.

This is the seventh of nine lessons in the 'Visualizing and Understanding the Science of Climate Change' website. This lesson addresses climate feedback loops and how these loops help drive and regulate Earth's unique climate system.

This hands-on activity is a kinesthetic game illustrating the dynamics of the carbon cycle. Acting as carbon atoms, students travel from one carbon reservoir to another; at each reservoir they determine, by rolling dice, how long they stay in the reservoir or how likely it is that they will move to another carbon reservoir.

In this activity, students conduct a life cycle assessment of energy used and produced in ethanol production, and a life cycle assessment of carbon dioxide used and produced in ethanol production.

In this interactive, regionally-relevant carbon cycle game, students are challenged to understand the role of carbon in global climate change. They imagine that they are carbon molecules and travel via different processes through carbon reservoirs on the Colorado Plateau (the Four Corners area of Arizona, Colorado, New Mexico and Utah). This game can be adapted to other regions.

Climate Change 2013: The Physical Science Basis

On September 27, 2013, Working Group I of the Intergovernmental Panel on Climate Change (IPCC) presented its report to member governments for approval and acceptance. The report is the first of four that will make up the IPCC's 5th Assessment.

Carbon Dioxide Information Analysis Center (CDIAC)

The CDIAC is the primary global-change data and information analysis center of the U.S. Department of Energy (DOE). It contains information on concentrations of carbon dioxide and other radioactively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of carbon dioxide to the atmosphere; long-term climate trends; the effects of elevated carbon dioxide on vegetation; and the vulnerability of coastal areas to rising sea level.

In this lab activity, students use a chemical indicator (bromothymol blue) to detect the presence of carbon dioxide in animal and plant respiration and in the burning of fossil fuels and its absence in the products of plant photosynthesis. After completing the five parts of this activity, students compare the colors of the chemical indicator in each part and interpret the results in terms of the qualitative importance of carbon sinks and sources.