This year's theme for the annual forum held in Washington, DC is “the value and sustainability of the weather, water and climate enterprise.” Recent research indicates that the annual economic impact of weather events is as much as $485 billion in the United States.

Carbon Dioxide Information Analysis Center (CDIAC)

The CDIAC is the primary global-change data and information analysis center of the U.S. Department of Energy (DOE). It contains information on concentrations of carbon dioxide and other radioactively active gases in the atmosphere; the role of the terrestrial biosphere and the oceans in the biogeochemical cycles of greenhouse gases; emissions of carbon dioxide to the atmosphere; long-term climate trends; the effects of elevated carbon dioxide on vegetation; and the vulnerability of coastal areas to rising sea level.

Smoke Forecasting System

The NOAA Smoke Forecasting System integrates satellite information on the location of wildfires with weather data inputs from the North American Mesoscale model and smoke dispersion simulations.  The result is a daily prediction of smoke transport and concentration 48 hours into the future. The model also incorporates U.S. Forest Service estimates for wildfire smoke emissions based on vegetation cover.

This video production is a part of a four-panel report from the National Academies' America's Climate Choices project. The video maps out the realm of our accumulated knowledge regarding climate change and charts a path forward, urging that research on climate change enter a new era focused on the needs of decision makers.

This video, along with a background essay, focuses on impacts of climate change on the lives of Native Alaskans around Barrow, Alaska. Specific changes include the timing of the changes in the formation and breakout of sea ice and the impacts on subsistence living.

C-Learn is a simplified version of the C-ROADS simulator. Its primary purpose is to help users understand the long-term climate effects (CO2 concentrations, global temperature, sea level rise) of various customized actions to reduce fossil fuel CO2 emissions, reduce deforestation, and grow more trees. Students can ask multiple, customized what-if questions and understand why the system reacts as it does.

This NASA animation presents the levels of atmospheric carbon dioxide over the last 400,000 years, last 1000 years and last 25 years at different time scales. The data come from the Lake Vostok ice cores (400,000 BC to about 4000 BC), Law Dome ice cores (1010 AD to 1975 AD) and Mauna Loa observations (1980 to 2005).

This static graph of changes in CO2 concentrations goes back 400,000 years, showing the dramatic spike in recent years.

This animation depicts the carbon cycle in a fashion that is suited for younger audiences. The video discusses how carbon enters and exits the environment through both natural and human-driven ways.

This simulation allows the user to project CO2 sources and sinks by adjusting the points on a graph and then running the simulation to see projections for the impact on atmospheric CO2 and global temperatures.

Pages