Students read an article about the impact of deforestation on the hydrosphere and answer review questions. Students choose two variables and make a prediction. Students pick a previous year to study and use the NASA Earth Observatory (NEO) website to download datasets showing different variables overlaying Rondonia and Mato Grosso, Brazil. Using visual analysis techniques, students explain whether their prediction was confirmed or not during the year in question.

An interactive simulation of Earth's seasonal dynamics that includes the axial tilt and other aspects of Earth's annual cycle.

This is part of a larger lab from the University of Nebraska at Lincoln:

This animation illustrates how heat energy from deep in Earth can be utilized to generate electricity at a large scale.

This static visualization shows that the global carbon cycle is determined by the interactions of climate, the environment, and Earth's living systems at many levels, from molecular to global.

This is a semester-long jigsaw project in which students work in teams to explore the effects of energy resource development on local water resources, economics, and society. Students are presented with a contemporary energy resource development issue being debated in their community. They research the water, geological, economic, and social impact of the project, and then either defend or support the development proposal.

This interactive map from National Geographic shows selected geographic locations for a number of impacts of global warming (on freshwater resources, food and forests, ecosystems, etc). Impact overview is summarized for each highlighted impact.

The figure summarizes some of the key variations amongst the six illustrative scenarios used by the Intergovernmental Panel on Climate Change (IPCC) in considering possible future emissions of greenhouse gases during the 21st century.

In this activity, learners observe the effects of the layering of warm and cold water and water that is more or less saline than regular water. They will discover how the effects of salinity and temperature are the root cause of thermohaline layering in the ocean.

In this activity, students calculate temperatures during a time in the geologic record when rapid warming occurred using a well known method called 'leaf-margin analysis.' Students determine the percentage of the species that have leaves with smooth edges, as opposed to toothed, or jagged, edges. Facsimiles of fossil leaves from two collection sites are examined, categorized, and the data is plugged into an equation to provide an estimate of paleotemperature for two sites in the Bighorn Basin. It also introduces students to a Smithsonian scientist who worked on the excavation sites and did the analysis.

In this Earth Exploration Toolbook chapter, students select, explore, and analyze satellite imagery. They do so in the context of a case study of the origins of atmospheric carbon monoxide and aerosols, tiny solid airborne particles such as smoke from forest fires and dust from desert wind storms. They use the software tool ImageJ to animate a year of monthly images of aerosol data and then compare the animation to one created for monthly images of carbon monoxide data. Students select, explore and analyze satellite imagery using NASA Earth Observatory (NEO) satellite data and NEO Image Composite Explorer (ICE) tool to investigate seasonal and geographic patterns and variations in concentration of CO and aerosols in the atmosphere.


Hide [X]