These animations depict the three major Milankovitch Cycles that impact global climate, visually demonstrating the definitions of eccentricity, obliquity, and precession, and their ranges of variation and timing on Earth.

This interactive visualization created by FRED (Free Energy Data), displays energy supply (by source) and demand (by use) for each state in the US from 1960 to 2010; forecasts through 2035 are available as well.

FRED is an open platform to help state and local governments, energy planners and policy-makers, private industry, and others to effectively visualize, analyze and compare energy-use data to make better energy decisions and sustainable strategies.

In this JAVA-based interactive modeling activity, students are introduced to the concept of mass balance, flow rates, and equilibrium using a simple water bucket model. Students can vary flow rate into the bucket, initial water level in the bucket, and residence time of water in the bucket. After running the model, the bucket's water level as a function of time is presented graphically and in tabular form.

This lesson plan has students working in small groups to research the Mountain Pine Beetle in Colorado and other inter-mountain Western states. Students identify the factors that control pine beetle population and research how warmer winters and decreasing spring snowpack allow the population of pine beetles to expand.

This is an interactive map that illustrates the scale of potential flooding in Alabama, Mississippi, and Florida due to projected sea level rise. It is a collaborative project of NOAA Sea Grant Consortium and U.S.G.S. It is a pilot project, so there is some possibility that the resource may not be maintained over time.

In this activity, students collect data and analyze the cost of using energy in their homes and investigate one method (switching to compact fluorescent light bulbs) of reducing energy use. This activity provides educators and students with the means to connect 'energy use consequences' and 'climate change causes.' Through examining home energy use and calculating both pollution caused by the generation of electricity and potential savings, students can internalize these issues and share information with their families.

This interactive map allows the user to explore projected alterations of land surfaces in coastal communities, based on different scenarios of sea level changes over time.

This audio slideshow/video describes the Greenland ice sheet and the difficulties in getting scientific measurements at the interface between the ice and the ocean. It features the work of a researcher from Woods Hole Oceanographic Institute researcher. She gives a personal account of her work on the recent increase in melting of glaciers, the challenges of working in Greenland, and the reasons why so many climate scientists are looking there for answers to questions about climate change.

In this activity, students examine images of alpine glaciers to develop an understanding of how glaciers respond to climate change. They record, discuss, and interpret their observations. They consider explanations for changes in the size and position of glaciers from around the world. They develop an understanding that the melting (retreat) of glaciers is occurring simultaneously on different continents around the world, and, thus, they represent evidence of global climate change.

This activity addresses naturally occurring climate change involving ENSO (El-NiÃo Southern Oscillation). In this activity, students play the role of a policy maker in Peru. First, they determine what sort of ENSO variation is occurring. Then, they must decide how to allocate Peru's resources to manage for possible weather-related problems.

Pages