In this activity, students gain experience using a spreadsheet and working with others to decide how to conduct their model 'experiments' with the NASA GEEBITT (Global Equilibrium Energy Balance Interactive Tinker Toy). While becoming more familiar with the physical processes that made Earth's early climate so different from that of today, they also acquire first-hand experience with a limitation in modeling, specifically, parameterization of critical processes.

In this exercise learners use statistics (T-test using Excel) to analyze an authentic dataset from Lake Mendota in Madison, WI that spans the last 150 years to explore ice on/ice off dates. In addition, students are asked to investigate the IPCC Likelihoodscale and apply it to their statistical results.

In this activity, students calculate temperatures during a time in the geologic record when rapid warming occurred using a well known method called 'leaf-margin analysis.' Students determine the percentage of the species that have leaves with smooth edges, as opposed to toothed, or jagged, edges. Facsimiles of fossil leaves from two collection sites are examined, categorized, and the data is plugged into an equation to provide an estimate of paleotemperature for two sites in the Bighorn Basin. It also introduces students to a Smithsonian scientist who worked on the excavation sites and did the analysis.

This short video describes the Hestia project - a software tool and data model that provide visualizations of localized CO2 emissions from residential, commercial, and vehicle levels, as well as day versus night comparisons, in the city of Indianapolis.

In this video a scientist explains how DNA extracted from ancient tree remains provides insights about how trees/plants have adapted, over time, to changes in CO2 in the atmosphere. Her lab research investigates changes in plant genotypes under experimental conditions that simulate potential changes in CO2 levels in the future.

This slideshow lays out a photo story with short descriptions of how city buildings all over the world are taking climate change and rising sea level seriously, designing structures that can react to unforeseen changes. As sea levels continue to rise, architects design ways to live with the rising water.

This video illustrates conditions under which two infectious diseases - cholera and dengue fever - flourish, and how climate change is likely to exacerbate those conditions.

This video is simple in its appearance, but it contains a wealth of relevant information about global climate models.

Students use the GLOBE Student Data Archive and visualizations to display current temperatures on a map of the world. They explore the patterns in the temperature map, looking especially for differences between different regions and hemispheres and zoom in for a closer look at a region that has a high density of student reporting stations (such as the US and Europe). Students compare and contrast the patterns in these maps, looking for seasonal patterns.

This short video discusses where carbon dioxide, the gas that is mainly responsible for warming up our planet and changing the climate, comes from. It discusses how the rise in atmospheric carbon dioxide comes directly from the burning of fossil fuels and indirectly from the human need for energy.

Pages