This short video shows how humanity uses energy today; what sources we use; and why, in the future, a growing global population will require more energy.

This video profiles the Arctic Inuit community of Sachs Harbour and its collaboration with scientists studying climate change. Changes in the land, sea, and animals are readily apparent to the residents of Sachs Harbourâmany of whom hunt, trap, and fishâbecause of their long-standing and intimate connection with their ecosystem. Scientists from a climate change study project interview the residents and record their observations. The scientists can use these firsthand accounts along with their own collected data to deepen their understanding of climate change in the polar region.

This Earth Exploration Toolbook chapter is a detailed computer-based exploration in which students learn how various climatic conditions impact the formations of sediment layers on the ocean floor. They analyze sediment core data from the Ross Ice Shelf in Antarctica for evidence of climate changes over time. In addition, they interact with various tools and animations throughout the activity, in particular the Paleontological Stratigraphic Interval Construction and Analysis Tool (PSICAT) that is used to construct a climate change model of a sediment core from core images.

This narrated slideshow describes the impact of sea level rise on Tuvalu, one of the low-lying island nations in the South Pacific. As the frequency and intensity of floods and cyclones increases, the island is shrinking and saltwater intrusion is affecting local food production on the plantations. As a result, many residents are moving off the island to New Zealand, where they face major cultural changes.

In this video from Young Voices for the Planet, four middle-school girls (The Green Team) talk about their efforts to work with their peers to reduce the carbon footprint of their school and how they made the school more energy efficient.

This three-part, hands-on investigation explores how sunlight's angle of incidence at Earth's surface impacts the amount of solar radiation received in a given area. The activity is supported by PowerPoint slides and background information.

This visualization illustrates the carbon cycle throughout the oceanic zones, beginning at the surface and traveling to the deep. The concept map-like connections encourage students to link the abiotic and biotic interactions within the oceanic food web.

In this experiment, students will observe two model atmospheres: one with normal atmospheric composition and another with an elevated concentration of carbon dioxide. These two contained atmospheres will be exposed to light energy from a sunny window or from a lamp. The carbon dioxide is produced by a simple reaction and tested using bromothymol blue (BTB).

In this classroom activity, students measure the energy use of various appliances and electronics and calculate how much carbon dioxide (CO2) is released to produce that energy.

In this activity, students review techniques used by scientists, as they analyze a 50-year temperature time series dataset. The exercise helps students understand that data typically has considerable variability from year to year and to predict trends or forecast the future, there is value in long-term data collection.

Pages