In this video, students learn that the Exxon Valdez oil spill in Alaska in 1989 was not the sole cause of the decline of species in the local ecosystem. Rather, an explanation is posited for why some animal populations were already in decline when the spill occurred. Many of these animals share a common food: the sand lance, a fish whose populations have shrunk with the steady rise in ocean temperature that began in the late 1970s.

This is the seventh of nine lessons in the 'Visualizing and Understanding the Science of Climate Change' website. This lesson addresses climate feedback loops and how these loops help drive and regulate Earth's unique climate system.

In this activity, students reconstruct past climates using lake varves as a proxy to interpret long-term climate patterns and to understand annual sediment deposition and how it relates to weather and climate patterns.

This video reviews how photovoltaic (PV) cells work, noting that technological innovations are decreasing costs and allowing PV use to expand.

A simple three-part diagram from UNEP GRID Vital Water Graphics showing what the impact of global warming will be on projected coastlines and populated areas of Bangladesh with a 1 and 1.5 m sea level rise relative to the current coastline.

The heart of this activity is a laboratory investigation that models the production of silicon. The activity is an investigation of silicon: the sources, uses, properties, importance in the fields of photovoltaics (solar cells/renewable energy) and integrated circuits industries, and, to a limited extent, environmental impact of silicon production.

In this video, students explore the work of Jay Keasling, a synthetic biologist experimenting with ways to produce a cleaner-burning fuel from biological matter, using genetically modified microorganisms.

A nicely crafted NASA video on Earth as the water planet, highlighting the value of ocean-observing satellites and the role they play in understanding the global effects of climate change.

Students explore their own Ecological Footprint in the context of how many Earths it would take if everyone used the same amount of resources they did. They compare this to the Ecological Footprint of individuals in other parts of the world and to the Ecological footprint of a family member when they were the student's age.

In this EarthLabs activity, learners explore the concepts of coral bleaching, bleaching hot spots and degree-heating weeks. Using data products from NOAA's Coral Reef Watch, students identify bleaching hot spots and degree-heating weeks around the globe as well as in the Florida Keys' Sombrero Reef to determine the impact higher-than-normal sea surface temperatures have on coral reefs.

Pages