This video segment highlights how the U.S. military is the single largest user of energy in the nation, but it is also trying to reduce its carbon bootprint. Scenes taped at Fort Irwin and Camp Pendleton show the Army and Marines experimenting with wind and solar in order to reduce the number of fuel convoys that are vulnerable to attack.

This video reviews how photovoltaic (PV) cells work, noting that technological innovations are decreasing costs and allowing PV use to expand.

This video segment explores whether, in principle, renewable energy resources could meet today's global energy needs of about 15.7 terawatts.

Student teams design and build solar water heating devices that mimic those used in residences to capture energy in the form of solar radiation and convert it to thermal energy. In this activity, students gain a better understanding of the three different types of heat transfer, each of which plays a role in the solar water heater design. Once the model devices are constructed, students perform efficiency calculations and compare designs.

Students investigate passive solar building design with a focus on heating. Insulation, window placement, thermal mass, surface colors, and site orientation are addressed in the background materials and design preparation. Students test their projects for thermal gains and losses during a simulated day and night then compare designs with other teams for suggestions for improvements.

This is a team-based activity that teaches students about the scale of the greenhouse gas problem and the technologies that already exist which can dramatically reduce carbon emissions. Students select carbon-cutting strategies to construct a carbon mitigation profile, filling in the wedges of a climate stabilization triangle.

This is a series of 10 short videos, hosted by National Science Foundation, each featuring scientists, research, and green technologies. The overall goal of this series is to encourage people to ask questions and look beyond fossil fuels for innovative solutions to our ever-growing energy needs.

This activity from the Department of Energy provides background information about solar ovens and instructions on building a simple model solar cooker.

In this 'Energy Education for the 21st Century' design challenge, students construct and evaluate a solar-powered model car. Students utilize the design process and undergo review by their peers to select an optimal gear ratio and components for their car. As a culminating activity, students compete in a Solar Sprint race modeled after the National Renewable Energy Laboratory's Junior Solar Sprint competition.

In this activity, students explore what types of energy resources exist in their state by examining a state map to identify the different energy sources in their state, including the state's renewable energy potential.

Pages