This webpage contains two videos that show climate visualizations created by super computers. Both videos show climate changes that may occur during the 21st Century due to human activities based on IPCC science.

In this activity, students gain experience using a spreadsheet and working with others to decide how to conduct their model 'experiments' with the NASA GEEBITT (Global Equilibrium Energy Balance Interactive Tinker Toy). While becoming more familiar with the physical processes that made Earth's early climate so different from that of today, they also acquire first-hand experience with a limitation in modeling, specifically, parameterization of critical processes.

A detailed Google Earth tour of glacier change over the last 50 years is given in class as an introduction. Students are then asked to select from a group of glaciers and create their own Google Earth tour exploring key characteristics and evident changes in that glacier.

In this video clip, Climate Central's Dr. Heidi Cullen explains that what we've known as "normals" for our climate, during the past decade, will very likely change soon. The new climate normal will provide key information for decisions we make in the future, ranging from what we plant, to what we pay for energy, and even to where we take a vacation.

This is a collection of five short videos - The Arctic Ice Cap, Sampling the Ice, Arctic Fisheries, Natives Feel Effect and Arctic Energy -- that can be played separately or in sequence. They show how climate change is affecting fishing, native populations and access for the oil and gas industry in the Arctic. The videos include personal reflections by writers Andrew C. Revkin and Simon Romero , scientists and residents about their experience of the impacts of the climate change in the Arctic.

In this hands-on activity, students explore whether rooftop gardens are a viable option for combating the urban heat island effect. Guiding question is: Can rooftop gardens reduce the temperature inside and outside houses?

This audio slideshow/video describes the Greenland ice sheet and the difficulties in getting scientific measurements at the interface between the ice and the ocean. It features the work of a researcher from Woods Hole Oceanographic Institute researcher. She gives a personal account of her work on the recent increase in melting of glaciers, the challenges of working in Greenland, and the reasons why so many climate scientists are looking there for answers to questions about climate change.

This Earth Exploration Toolbook chapter uses ArcGIS and climate data from the National Center for Atmospheric Research (NCAR) Climate Change Scenarios GIS Data Portal to help users learn the basics of GIS-based climate modeling. The five-part exercise involves calculating summer average temperatures for the present day and future climate modeled output, visually comparing the temperature differences for the two model runs, and creating a temperature anomaly map to highlight air temperature increases or decreases around the world.

This teaching activity addresses regional variability as predicted in climate change models for the next century. Using real climatological data from climate models, students will obtain annual predictions for minimum temperature, maximum temperature, precipitation, and solar radiation for Minnesota and California to explore this regional variability. Students import the data into a spreadsheet application and analyze it to interpret regional differences. Finally, students download data for their state and compare them with other states to answer a series of questions about regional differences in climate change.

In this video segment, two students discuss the greenhouse effect and visit with research scientists at Biosphere 2 in Arizona, who research the effects of global climate change on organisms in a controlled facility. Their current research (as of 2002) focuses on the response to increased quantities of CO2 in a number of different model ecosystems.

Pages