In this 3-part lesson, students explore California climate and factors that are leading to changes within this climate system. Students begin by exploring California's climate and the state's topography. Next, they investigate coastal versus inland climate. Finally, they use My NASA Data to explore the effects of El NiÃo/La NiÃa on two locations found at the same latitude.

Students read an article about the impact of deforestation on the hydrosphere and answer review questions. Students choose two variables and make a prediction. Students pick a previous year to study and use the NASA Earth Observatory (NEO) website to download datasets showing different variables overlaying Rondonia and Mato Grosso, Brazil. Using visual analysis techniques, students explain whether their prediction was confirmed or not during the year in question.

In this activity about climate change on the Antarctic Peninsula, learners investigate environmental changes in the living and nonliving resources of Antarctic peninsula and the impact of these changes on AdÃlie penguin communities. The activity stresses the importance of evidence in the formulation of scientific explanations.

In this interactive simulation, students adjust mountain snowfall and temperature to see the glacier grow and shrink, and use scientific tools to measure thickness, velocity, and glacial budget.

This web-based activity tackles the broad reasons for undertaking ocean exploration - studying the interconnected issues of climate change, ocean health, energy and human health. Students examine the types of technology ocean scientists use to collect important data.

Developed for Alaska Native students, this activity can be customized for other regions. Students interview elders or other long-term residents of the community to document their knowledge of local changes to the landscape and climate. Based on the information and photos they acquired from the interview, students return to photo locations to observe and record changes. Finally, they develop ideas about potential impacts of a warming climate to the ecosystem that surrounds them.

A series of activities designed to introduce students to the role of sediments and sedimentary rocks in the global carbon cycle and the use of stable carbon isotopes to reconstruct ancient sedimentary environments. Students will make some simple calculations, think about the implications of their results, and see an optional demonstration of the density separation of a sediment sample into a light, organic and a heavier mineral fraction.

In this activity students graph and analyze data from marine sediment cores of the coast of Santa Barbara to predict what the global climate was during the past 160,000 years.

This activity students through the ways scientists monitor changes in Earth's glaciers, ice caps, and ice sheets. Students investigate about glacier locations, glacial movement, and impacts of climate change on glaciers depending on the depth of research. It is linked to 2009 PBS Nova program entitled Extreme Ice.

In this exercise learners use statistics (T-test using Excel) to analyze an authentic dataset from Lake Mendota in Madison, WI that spans the last 150 years to explore ice on/ice off dates. In addition, students are asked to investigate the IPCC Likelihoodscale and apply it to their statistical results.

Pages

Hide [X]