This Earth Exploration Toolbook chapter uses ArcGIS and climate data from the National Center for Atmospheric Research (NCAR) Climate Change Scenarios GIS Data Portal to help users learn the basics of GIS-based climate modeling. The five-part exercise involves calculating summer average temperatures for the present day and future climate modeled output, visually comparing the temperature differences for the two model runs, and creating a temperature anomaly map to highlight air temperature increases or decreases around the world.

This is an interactive graph that involves records of ice cover in two Wisconsin lakes - Lake Mendota and Lake Monona - from 1855-2010.

This video examines the thawing of permafrost due to changes in climate and shows examples of the impacts that warming temperatures have on permafrost in the Arctic, including the release of the greenhouse gas methane. Dramatic results are shown, including sink holes forming on the landscape and beneath buildings, roads, and other infrastructure, causing some communities to relocate.

In this activity, students use Google Earth and information from several websites to investigate some of the consequences of climate change in polar regions, including the shrinking of the ice cap at the North Pole, disintegration of ice shelves, melting of Greenland, opening of shipping routes, effects on polar bears, and possible secondary effects on climate in other regions due to changes in ocean currents. Students learn to use satellite and aerial imagery, maps, graphs, and statistics to interpret trends accompanying changes in the Earth system.

In this interactive, students explore, at their own pace, how global climate change may affect health issues. Issues include airborne diseases, developmental disorders, mental health disorders, vector-borne diseases and waterborne diseases.

With this simulation from the NASA Climate website, learners explore different examples of how ice is melting due to climate change in four places where large quantities of ice are found. The photo comparisons, graphs, animations, and especially the time lapse video clips of glaciers receding are astonishing and dramatic.

This activity engages learners in examining data pertaining to the disappearing glaciers in Glacier National Park. After calculating percentage change of the number of glaciers from 1850 (150) to 1968 (50) and 2009 (26), students move on to the main glacier-monitoring content of the module--area vs. time data for the Grinnell Glacier, one of 26 glaciers that remain in the park. Using a second-order polynomial (quadratic function) fitted to the data, they extrapolate to estimate when there will be no Grinnell Glacier remaining (illustrating the relevance of the question mark in the title of the module).

This short video, adapted from NOVA, explains how Earth's position relative to the Sun might be responsible for the dramatic shift in the climate of what is now the Saharan nation of Djibouti.

This NOAA video discusses how the ocean absorbs the increased amount of carbon dioxide released into the atmosphere, thereby changing the pH and buffering action of the ocean. These changes in pH are impacting calcifying organisms, such as corals and shellfish, and related food chains and ecosystems.

This activity engages students in the analysis of climate data to first find areas in the southern United States that are now close to having conditions in which the malaria parasite and its mosquito hosts thrive and then attempt to forecast when areas might become climatically suitable.

Pages