Students calculate the cost of the energy used to operate a common three-bulb light fixture. They then compare the costs and amount of CO2 produced for similar incandescent and compact fluorescent light bulbs. Students also do a short laboratory activity to visualize why two bulbs, which give off the same amount of light, use different amounts of electrical energy.

Student teams design and build solar water heating devices that mimic those used in residences to capture energy in the form of solar radiation and convert it to thermal energy. In this activity, students gain a better understanding of the three different types of heat transfer, each of which plays a role in the solar water heater design. Once the model devices are constructed, students perform efficiency calculations and compare designs.

Students investigate passive solar building design with a focus on heating. Insulation, window placement, thermal mass, surface colors, and site orientation are addressed in the background materials and design preparation. Students test their projects for thermal gains and losses during a simulated day and night then compare designs with other teams for suggestions for improvements.

In this classroom activity, students measure the energy use of various appliances and electronics and calculate how much carbon dioxide (CO2) is released to produce that energy.

This is a team-based activity that teaches students about the scale of the greenhouse gas problem and the technologies that already exist which can dramatically reduce carbon emissions. Students select carbon-cutting strategies to construct a carbon mitigation profile, filling in the wedges of a climate stabilization triangle.

In this activity, students engage in a simulation of the international negotiation process in order to convey how the international community is responding to climate change. Participants learn firsthand about the interests of different countries and the range of policy responses to mitigate future climate change.

In this learning activity, students use a web-based carbon calculator to determine their carbon footprint on the basis of their personal and household habits and choices. Students identify which personal activities and household choices produce the most CO2 emissions, compare their carbon footprint to the U.S. and global averages, and identify lifestyle changes they can make to reduce their footprint.

In this classroom activity, students analyze regional energy usage data and their own energy bills to gain an understanding of individual consumption, regional uses, costs, and sources of energy.

In this activity, students will determine the environmental effects of existing cars and a fleet consisting of their dream cars. They compute how many tons of heat-trapping gases are produced each year, how much it costs to fuel the cars, and related information. Then, students research and prepare a report about greener transportation choices.

This multi-week project begins with a measurement of baseline consumptive behavior followed by three weeks of working to reduce the use of water, energy, high-impact foods, and other materials. The assignment uses an Excel spreadsheet that calculates direct energy and water use as well as indirect CO2 and water use associated with food consumption. After completing the project, students understand that they do indeed play a role in the big picture. They also learn that making small changes to their lifestyles is not difficult and they can easily reduce their personal impact on the environment.

Pages