In this activity, students compare carbon dioxide (CO2) data from Mauna Loa Observatory, Barrow (Alaska), and the South Pole over the past 40 years to help them better understand what controls atmospheric carbon dioxide. This activity makes extensive use of Excel.

In this activity, students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.

This activity from NOAA Earth System Research Laboratory introduces students to the current scientific understanding of the greenhouse effect and the carbon cycle. The activity leads them through several interactive tasks investigating recent trends in atmospheric carbon dioxide. Students analyze scientific data and use scientific reasoning to determine the causes responsible for these recent trends. By studying carbon cycle science in a visual and interactive manner, the activity provides students with a conceptual framework with which to address the challenges of a changing climate.

Students examine data from Mauna Loa to learn about CO2 in the atmosphere. The students also examine how atmospheric CO2 changes through the seasonal cycle, by location on Earth, and over about 40 years and more specifically over 15 years. Students graph data in both the Northern and Southern Hemisphere and draw conclusions about hemispherical differences in CO2 release and uptake.

In this mock mission, students become members of a research team and conduct a series of tasks to audit Earth's radiative budget. They use a Java Applet/visual viewer to access satellite data sets, calculate the balance of incoming and outgoing solar radiation, and defend their answers to a number of science questions.

In this activity students learn how Earth's energy balance is regulating climate. This activity is lesson 4 in the nine-lesson module Visualizing and Understanding the Science of Climate Change.

This lesson covers different aspects of the major greenhouse gases - water vapor, carbon dioxide, methane, nitrous oxides and CFCs - including some of the ways in which human activities are affecting the atmospheric concentrations of these key greenhouse gases. This is lesson six in a nine-lesson module about climate change.

Students explore the carbon cycle and the relationship between atmospheric carbon dioxide concentrations and temperature. Students create and compare graphs of carbon dioxide and temperature data from one local (Mauna Loa, Hawaii) meteorological station and one NASA global data set. These graphs, as well as a global vegetation map and an atmospheric wind circulation patterns diagram, are used as evidence to support the scientific claims they develop through their analysis and interpretation.

This activity is a greenhouse-effect-in-a-bottle experiment. The lesson includes readings from NEED.org and an inquiry lab measuring the effect of carbon dioxide and temperature change in an enclosed environment.

In this experiment, students will observe two model atmospheres: one with normal atmospheric composition and another with an elevated concentration of carbon dioxide. These two contained atmospheres will be exposed to light energy from a sunny window or from a lamp. The carbon dioxide is produced by a simple reaction and tested using bromothymol blue (BTB).

Pages