This webpage contains two videos that show climate visualizations created by super computers. Both videos show climate changes that may occur during the 21st Century due to human activities based on IPCC science.

This simulation allows the user to project CO2 sources and sinks by adjusting the points on a graph and then running the simulation to see projections for the impact on atmospheric CO2 and global temperatures.

Students consider why the observed atmospheric CO2 increase rate is only ~60% of the CO2 loading rate due to fossil fuel combustion. They develop a box-model to simulate the atmospheric CO2 increase during the industrial era and compare it to the historic observations of atmospheric CO2 concentrations. The model is then used to forecast future concentrations of atmospheric CO2 during the next century.

In this interactive simulation, students can explore global CO2 emissions displayed by different continents/countries and plotted based on the GDP. A map view is also accessible.

This is a simulation that illustrates how temperature will be affected by global CO2 emission trajectories. It addresses the issue that even if global emissions begin to decrease, the atmospheric concentration of CO2 will continue to increase, resulting in increased global temperatures.

This is an interactive map of California and the Sierra Nevada mountains, showing projected variations in water stored in snowpack, from 1950 to 2090, assuming low or high emission scenarios over that period of time. Interactive can be adjusted to show different months of the year and various climate models, graphed by site.

With this carbon/temperature interactive model, students investigate the role of atmospheric carbon in the greenhouse effect using a relationship between atmospheric carbon dioxide and global temperature.

This resource is about the urban heat island effect. Students access student-collected surface temperature data provided through the GLOBE program and analyze the data with My World GIS.

This activity with a lab report instructs students to solve and plot 160,000 years' worth of ice core data from the Vostok ice core using Excel or similar spreadsheets to analyze data. Students learn about ice cores and what they can tell us about past atmospheric conditions and the past atmospheric concentrations of CO2 and CH4.

In this activity, students compare carbon dioxide (CO2) data from Mauna Loa Observatory, Barrow (Alaska), and the South Pole over the past 40 years to help them better understand what controls atmospheric carbon dioxide. This activity makes extensive use of Excel.

Pages