In this activity, student teams research and develop a proposal to decrease the carbon footprint of their city's/town's public transportation system and then prepare a report that explains why their transportation plan is the best for their community.

This Energy Flow Charts website is a set of energy Sankey diagrams or flow charts for 136 countries constructed from data maintained by the International Energy Agency (IEA) and reflects the energy use patterns for 2007.

These flow charts show carbon dioxide emissions for each state, the District of Columbia and the entire United States. Emissions are distinguished by energy source and end use.

This video segment highlights how the U.S. military is the single largest user of energy in the nation, but it is also trying to reduce its carbon bootprint. Scenes taped at Fort Irwin and Camp Pendleton show the Army and Marines experimenting with wind and solar in order to reduce the number of fuel convoys that are vulnerable to attack.

Sankey (or Spaghetti) diagrams parse out the energy flow by state, based on 2008 data from the Dept. of Energy. These diagrams can help bring a local perspective to energy consumption. The estimates include rejected or lost energy but don't necessarily include losses at the ultimate user end that are due to lack of insulation.

This video from Earth: The Operators' Manual describes how fossil fuels are made, and it compares how long it takes to create coal, oil and natural gas (millions of years), with how fast we're using them (hundreds of years). Narrated by Dr. Richard Alley.

This interactive diagram from the National Academy of Sciences shows how we rely on a variety of primary energy sources (solar, nuclear, hydro, wind, geothermal, natural gas, coal, biomass, oil) to supply energy to four end-use sectors (residential, commercial, industrial, and transportation). It also focuses on lost or degraded energy.

This is a semester-long jigsaw project in which students work in teams to explore the effects of energy resource development on local water resources, economics, and society. Students are presented with a contemporary energy resource development issue being debated in their community. They research the water, geological, economic, and social impact of the project, and then either defend or support the development proposal.

Students use Google Earth to analyze oil consumption per capita in the US and around the world. Students then use spreadsheets to create graphs and calculate statistics regarding per capita energy use among various categories.

In this short activity, students or groups are tasked to make concept sketches that track the source of electrical power as far back as they can conceive. The concept sketches reveal students' prior conceptions of the power grid and energy mix, and lead naturally into a lesson or discussion about energy resources and power production.