This video from Earth: The Operators' Manual describes how fossil fuels are made, and it compares how long it takes to create coal, oil and natural gas (millions of years), with how fast we're using them (hundreds of years). Narrated by Dr. Richard Alley.

This is a laboratory activity in which students will compare the amount of carbon dioxide in four different sources of gas and determine the carbon dioxide contribution from automobiles. They test ambient air, human exhalation, automobile exhaust, and nearly pure carbon dioxide from a vinegar/baking soda mixture.

This activity illustrates the carbon cycle using an age-appropriate hook, and it includes thorough discussion and hands-on experimentation. Students learn about the geological (ancient) carbon cycle; they investigate the role of dinosaurs in the carbon cycle, and the eventual storage of carbon in the form of chalk. Students discover how the carbon cycle has been occurring for millions of years and is necessary for life on Earth. Finally, they may extend their knowledge to the concept of global warming and how engineers are working to understand the carbon cycle and reduce harmful carbon dioxide emissions.

Students calculate the cost of the energy used to operate a common three-bulb light fixture. They then compare the costs and amount of CO2 produced for similar incandescent and compact fluorescent light bulbs. Students also do a short laboratory activity to visualize why two bulbs, which give off the same amount of light, use different amounts of electrical energy.

In this classroom activity, students measure the energy use of various appliances and electronics and calculate how much carbon dioxide (CO2) is released to produce that energy.

This is a team-based activity that teaches students about the scale of the greenhouse gas problem and the technologies that already exist which can dramatically reduce carbon emissions. Students select carbon-cutting strategies to construct a carbon mitigation profile, filling in the wedges of a climate stabilization triangle.

This interactive diagram from the National Academy of Sciences shows how we rely on a variety of primary energy sources (solar, nuclear, hydro, wind, geothermal, natural gas, coal, biomass, oil) to supply energy to four end-use sectors (residential, commercial, industrial, and transportation). It also focuses on lost or degraded energy.

This Flash animation describes how hybrid-electric vehicles (HEVs) combine the benefits of gasoline engines and electric motors and can be configured to obtain different objectives, such as improved fuel economy, increased power, or additional auxiliary power for electronic devices and power tools.

This is a semester-long jigsaw project in which students work in teams to explore the effects of energy resource development on local water resources, economics, and society. Students are presented with a contemporary energy resource development issue being debated in their community. They research the water, geological, economic, and social impact of the project, and then either defend or support the development proposal.

This video from the U.S. National Academies summarizes the energy challenges the United States faces, the technological challenges, and the need for behavior and policy changes required to meet the challenge.

Pages