This activity is a learning game in which student teams are each assigned a different energy source. Working cooperatively, students use their reading, brainstorming, and organizational skills to hide the identity of their team's energy source while trying to guess which energy sources the other teams represent.

This activity illustrates the carbon cycle using an age-appropriate hook, and it includes thorough discussion and hands-on experimentation. Students learn about the geological (ancient) carbon cycle; they investigate the role of dinosaurs in the carbon cycle, and the eventual storage of carbon in the form of chalk. Students discover how the carbon cycle has been occurring for millions of years and is necessary for life on Earth. Finally, they may extend their knowledge to the concept of global warming and how engineers are working to understand the carbon cycle and reduce harmful carbon dioxide emissions.

This is a debate-style learning activity in which student teams learn about energy sources and are then assigned to represent the different energy sources. Working cooperatively, students develop arguments on the pros and cons of their source over the others.

Students calculate the cost of the energy used to operate a common three-bulb light fixture. They then compare the costs and amount of CO2 produced for similar incandescent and compact fluorescent light bulbs. Students also do a short laboratory activity to visualize why two bulbs, which give off the same amount of light, use different amounts of electrical energy.

This activity from the Department of Energy provides background information about solar ovens and instructions on building a simple model solar cooker.

Student teams design and build solar water heating devices that mimic those used in residences to capture energy in the form of solar radiation and convert it to thermal energy. In this activity, students gain a better understanding of the three different types of heat transfer, each of which plays a role in the solar water heater design. Once the model devices are constructed, students perform efficiency calculations and compare designs.

This activity focuses on applying analytic tools such as pie charts and bar graphs to gain a better understanding of practical energy use issues. Also provides experience with how different types of data collected affect the outcome of statistical visualization tools.

Students investigate passive solar building design with a focus on heating. Insulation, window placement, thermal mass, surface colors, and site orientation are addressed in the background materials and design preparation. Students test their projects for thermal gains and losses during a simulated day and night then compare designs with other teams for suggestions for improvements.

This activity focuses on wind energy concepts, which are introduced through a Reading Passage and by answering assessment questions. Students construct and test a windmill to observe how design and position affect the electrical energy produced.

In this hands-on engineering activity, students will build a tabletop wind turbine. Students get acquainted with the basics of wind energy and power production by fabricating and testing various blade designs for table-top windmills constructed from one-inch PVC pipe and balsa wood (or recycled materials). The activity includes lots of good media and Web resources supporting the science content.