This series of activities introduce students to polar oceanography, polar climate and how events that occur in oceans thousands of kilometers away affect them and the mid-latitudes using maps, images, lab experiments and online data tools. Students explore how conditions are changing in the Polar Regions and the possible impacts upon life in the United States and other mid-latitude nations.

Students use the GLOBE Student Data Archive and visualizations to display current temperatures on a map of the world. They explore the patterns in the temperature map, looking especially for differences between different regions and hemispheres and zoom in for a closer look at a region that has a high density of student reporting stations (such as the US and Europe). Students compare and contrast the patterns in these maps, looking for seasonal patterns.

This activity develops student understanding of the relationship of weather and climate. Students use interview techniques to explore perceptions about local climate change among long-time residents of their community. Students then compare the results of their interviews to long term local temperature and precipitation records.

In this activity, students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years. Stacked together, the overheads for the whole class show an increase on carbon dioxide over five years and annual variation driven by photosynthesis. This exercise enables students to practice basic quantitative skills and understand how important sampling intervals can be when studying changes over time. A goal is to see how small sample size may give incomplete picture of data.

In this activity, students learn about sea ice extent in both polar regions (Arctic and Antarctic). They start out by forming a hypothesis on the variability of sea ice, testing the hypothesis by graphing real data from a recent 3-year period to learn about seasonal variations and over a 25-year period to learn about longer-term trends, and finish with a discussion of their results and predictions.

Teaching Climate: In this activity, students investigate aspects of change in the biosphere of California's Central Valley. Analyzing data over both space and time, they begin to tie together some of the causes and effects of a variable and changing climate. The valley serves as a model environment that includes riverine, wetland, rural-agricultural, and urban regimes all with high water-dependencies and susceptibility to drought.

In this activity, students learn how to read, analyze, and construct climographs. These climographs are a graphic way of displaying monthly average temperature and precipitation. Students also practice matching climographs to various locations and summarize global-scale climate patterns revealed by comparing climographs.

In this 3-part lesson, students explore California climate and factors that are leading to changes within this climate system. Students begin by exploring California's climate and the state's topography. Next, they investigate coastal versus inland climate. Finally, they use My NASA Data to explore the effects of El NiÃo/La NiÃa on two locations found at the same latitude.

This Earth Exploration Toolbook chapter is a detailed computer-based exploration in which students learn how various climatic conditions impact the formations of sediment layers on the ocean floor. They analyze sediment core data from the Ross Ice Shelf in Antarctica for evidence of climate changes over time. In addition, they interact with various tools and animations throughout the activity, in particular the Paleontological Stratigraphic Interval Construction and Analysis Tool (PSICAT) that is used to construct a climate change model of a sediment core from core images.

Students read an article about the impact of deforestation on the hydrosphere and answer review questions. Students choose two variables and make a prediction. Students pick a previous year to study and use the NASA Earth Observatory (NEO) website to download datasets showing different variables overlaying Rondonia and Mato Grosso, Brazil. Using visual analysis techniques, students explain whether their prediction was confirmed or not during the year in question.


Hide [X]