This animation demonstrates the changing declination of the sun with a time-lapse animation. It shows how the shadow of a building changes over the course of a year as the declination of the sun changes.

This classroom activity is aimed at an understanding of different ecosystems by understanding the influence of temperature and precipitation. Students correlate graphs of vegetation vigor with those of temperature and precipitation data for four diverse ecosystems, ranging from near-equatorial to polar, and spanning both hemispheres to determine which climatic factor is limiting growth.

A computer animation on the reason for the seasons. Voice-over describes the motion of Earth around the sun to show how the sun's light impacts the tilted Earth at different times of the year, causing seasonal changes.

This NOAA visualization video on YouTube shows the seasonal variations in sea surface temperatures and ice cover for the 22 years prior to 2007 based on data collected by NOAA polar-orbiting satellites (POES). El NiÃo and La NiÃa are easily identified, as are the trends in decreasing polar sea ice.

An interactive simulation of Earth's seasonal dynamics that includes the axial tilt and other aspects of Earth's annual cycle.

This is part of a larger lab from the University of Nebraska at Lincoln: http://astro.unl.edu/naap/motion1/motion1.html

In this mock mission, students become members of a research team and conduct a series of tasks to audit Earth's radiative budget. They use a Java Applet/visual viewer to access satellite data sets, calculate the balance of incoming and outgoing solar radiation, and defend their answers to a number of science questions.

In this activity, students develop an understanding of the relationship between natural phenomena, weather, and climate change: the study known as phenology. In addition, they learn how cultural events are tied to the timing of seasonal events. Students brainstorm annual natural phenomena that are tied to seasonal weather changes. Next, they receive information regarding the Japanese springtime festival of Hanami, celebrating the appearance of cherry blossoms. Students plot and interpret average bloom date data from over the past 1100 years.

Hands-on laboratory activity that allows students to investigate the effects of distance and angle on the input of solar radiation at Earth's surface, the role played by albedo, the heat capacity of land and water, and how these cause the seasons. Students predict radiative heating based on simple geometry and experiment to test their hypotheses.

This activity develops students' understanding of climate by having them make in-depth examinations of historical climate patterns using both graphical and map image formats rather than presenting a general definition of climate. Students explore local climate in order to inform a pen pal what type of weather to expect during an upcoming visit. Students generate and explore a variety of graphs, charts, and map images and interpret them to develop an understanding of climate.

In this hands-on lesson, students measure the effect of distance and inclination on the amount of heat felt by an object and apply this experiment to building an understanding of seasonality. In Part 1, the students set up two thermometers at different distances from a light bulb and record their temperatures to determine how distance from a heat source affects temperature. In Part 2, students construct a device designed to measure the temperature as a function of viewing angle toward the Sun by placing a thermometer inside a black construction paper sleeve, and placing the device at different angles toward the Sun. They then explain how distance and inclination affect heat and identify situations where these concepts apply, such as the seasons on Earth and the NASA Mercury MESSENGER mission.

Pages