Animations of CO2 concentration in the free troposphere, as simulated by NOAA's ESRL CarbonTracker.

In this 3-part lesson, students explore California climate and factors that are leading to changes within this climate system. Students begin by exploring California's climate and the state's topography. Next, they investigate coastal versus inland climate. Finally, they use My NASA Data to explore the effects of El NiÃo/La NiÃa on two locations found at the same latitude.

An interactive visualization tool to examine geocentric seasonal and latitudinal variability in solar energy reaching Earth's surface.

Students read an article about the impact of deforestation on the hydrosphere and answer review questions. Students choose two variables and make a prediction. Students pick a previous year to study and use the NASA Earth Observatory (NEO) website to download datasets showing different variables overlaying Rondonia and Mato Grosso, Brazil. Using visual analysis techniques, students explain whether their prediction was confirmed or not during the year in question.

An interactive simulation of Earth's seasonal dynamics that includes the axial tilt and other aspects of Earth's annual cycle.

This is part of a larger lab from the University of Nebraska at Lincoln: http://astro.unl.edu/naap/motion1/motion1.html

This well-designed experiment compares CO2 impacts on salt water and fresh water. In a short demonstration, students examine how distilled water (i.e., pure water without any dissolved ions or compounds) and seawater are affected differently by increasing carbon dioxide in the air.

In this activity, students develop an understanding of the relationship between natural phenomena, weather, and climate change: the study known as phenology. In addition, they learn how cultural events are tied to the timing of seasonal events. Students brainstorm annual natural phenomena that are tied to seasonal weather changes. Next, they receive information regarding the Japanese springtime festival of Hanami, celebrating the appearance of cherry blossoms. Students plot and interpret average bloom date data from over the past 1100 years.

In this activity, learners use the STELLA box modeling software to determine Earth's temperature based on incoming solar radiation and outgoing terrestrial radiation. Starting with a simple black body model, the exercise gradually adds complexity by incorporating albedo, then a 1-layer atmosphere, then a 2-layer atmosphere, and finally a complex atmosphere with latent and sensible heat fluxes. With each step, students compare the modeled surface temperature to Earth's actual surface temperature, thereby providing a check on how well each increasingly complex model captures the physics of the actual system.

This activity develops student understanding of the relationship of weather and climate. Students use interview techniques to explore perceptions about local climate change among long-time residents of their community. Students then compare the results of their interviews to long term local temperature and precipitation records.

In this activity about climate change on the Antarctic Peninsula, learners investigate environmental changes in the living and nonliving resources of Antarctic peninsula and the impact of these changes on AdÃlie penguin communities. The activity stresses the importance of evidence in the formulation of scientific explanations.

Pages

Hide [X]