This is a multi-faceted activity that offers students a variety of opportunities to learn about permafrost through an important sink and source of greenhouse gas (methane), about which most students living in lower latitudes know little.

This series of activities introduce students to polar oceanography, polar climate and how events that occur in oceans thousands of kilometers away affect them and the mid-latitudes using maps, images, lab experiments and online data tools. Students explore how conditions are changing in the Polar Regions and the possible impacts upon life in the United States and other mid-latitude nations.

In this activity, students learn about sea ice extent in both polar regions (Arctic and Antarctic). They start out by forming a hypothesis on the variability of sea ice, testing the hypothesis by graphing real data from a recent 3-year period to learn about seasonal variations and over a 25-year period to learn about longer-term trends, and finish with a discussion of their results and predictions.

In this classroom activity, students access sea surface temperature and wind speed data from a NASA site, plot and compare data, draw conclusions about surface current and sea surface temperature, and link their gained understanding to concerns about global climate change.

This lesson covers different aspects of the major greenhouse gases - water vapor, carbon dioxide, methane, nitrous oxides and CFCs - including some of the ways in which human activities are affecting the atmospheric concentrations of these key greenhouse gases. This is lesson six in a nine-lesson module about climate change.

This is the seventh of nine lessons in the 'Visualizing and Understanding the Science of Climate Change' website. This lesson addresses climate feedback loops and how these loops help drive and regulate Earth's unique climate system.

This is the first of nine lessons in the "Visualizing and Understanding the Science of Climate Change" website. This lesson is an introduction to Earth's climate and covers key principles regarding Earth's unique climate, atmosphere, and regional and temporal climate differences.

Students explore the carbon cycle and the relationship between atmospheric carbon dioxide concentrations and temperature. Students create and compare graphs of carbon dioxide and temperature data from one local (Mauna Loa, Hawaii) meteorological station and one NASA global data set. These graphs, as well as a global vegetation map and an atmospheric wind circulation patterns diagram, are used as evidence to support the scientific claims they develop through their analysis and interpretation.

With this carbon/temperature interactive model, students investigate the role of atmospheric carbon in the greenhouse effect using a relationship between atmospheric carbon dioxide and global temperature.

In this lesson, students explore several facets of the impact of volcanic eruptions on the atmosphere. Students analyze three types of visual information: a graph of aerosol optical depth v. global temperature, a global map with temperature anomalies, and an ash plume photograph. In the hands-on activity, students use math to determine the rate and estimated time of arrival of an ash plume at an airfield.

Pages