This short video from NASA discusses the role that salinity plays in Earth's climate and ocean circulation, focusing on the observations of the Aquarius satellite.

A simple click-through animation from Scripps Institute's Earthguide program breaks the complex topic of the global energy balance into separate concepts. Slides describe the different pathways for incoming and outgoing radiation.

This video highlights research conducted at Woods Hole on how heat absorbed by the ocean and changes of ocean chemistry from human activities could lead to a tipping point for marine life and ecosystems. Includes ice bath experiment that models the tipping point of Arctic sea ice.

This audio slideshow/video describes the Greenland ice sheet and the difficulties in getting scientific measurements at the interface between the ice and the ocean. It features the work of a researcher from Woods Hole Oceanographic Institute researcher. She gives a personal account of her work on the recent increase in melting of glaciers, the challenges of working in Greenland, and the reasons why so many climate scientists are looking there for answers to questions about climate change.

This is a video that discusses how climate feedbacks influence global warming.

This qualitative graphic illustrates the various factors that affect the amount of solar radiation hitting or being absorbed by Earth's surface such as aerosols, clouds, and albedo.

This lesson is a lab in which students use thermometers, white and dark paper, and lamps to measure differences in albedo between the light and dark materials. Connections are made to albedo in Antarctica.

This activity uses a mix of multimedia resources and hands-on activities to support a storyline of investigation into melting sea ice. The lesson begins with a group viewing of a video designed to get students to consider both the local and global effects of climate change. The class then divides into small groups for inquiry activities on related topics followed by a presentation of the findings to the entire class. A final class discussion reveals a more complex understanding of both the local and global impacts of melting sea ice.

This activity teaches students about the albedo of surfaces and how it relates to the ice-albedo feedback effect. During an experiment, students observe the albedo of two different colored surfaces by measuring the temperature change of a white and black surface under a lamp.

In this activity, students learn about sea ice extent in both polar regions (Arctic and Antarctic). They start out by forming a hypothesis on the variability of sea ice, testing the hypothesis by graphing real data from a recent 3-year period to learn about seasonal variations and over a 25-year period to learn about longer-term trends, and finish with a discussion of their results and predictions.