In this lesson, students explore several facets of the impact of volcanic eruptions on the atmosphere. Students analyze three types of visual information: a graph of aerosol optical depth v. global temperature, a global map with temperature anomalies, and an ash plume photograph. In the hands-on activity, students use math to determine the rate and estimated time of arrival of an ash plume at an airfield.

This lesson is an investigation of the impact of climate change on the phenology of a variety of taxa, including migrating birds and hibernating animals in the Colorado Rockies. Students analyze 40 years of data collected by Billy Barr from the Rocky Mountain Biological Laboratory.

This activity introduces students to visualization capabilities available through NASA's Earth Observatory, global map collection, NASA NEO and ImageJ. Using these tools, students build several animations of satellite data that illustrate carbon pathways through the Earth system.

In this activity learners investigate the link between ocean temperatures and hurricane intensity, analyze instrumental and historical data, and explore possible future changes.

This resource is about the urban heat island effect. Students access student-collected surface temperature data provided through the GLOBE program and analyze the data with My World GIS.

In this activity, students learn about the urban heat island effect by investigating which areas of their schoolyard have higher temperatures - trees, grass, asphalt, and other materials. Based on their results, they hypothesize how concentrations of surfaces that absorb heat might affect the temperature in cities - the urban heat island effect. Then they analyze data about the history of Los Angeles heat waves and look for patterns in the Los Angeles climate data and explore patterns.

In this activity, students are guided through the process of locating and graphing web-based environmental data that has been collected by GLOBE Program participants using actual data collected by students in Pennsylvania and comparing them to their local climatic boundary conditions. This activity highlights the opportunities for using GLOBE data to introduce basic concepts of Earth system science.

Students examine data from Mauna Loa to learn about CO2 in the atmosphere. The students also examine how atmospheric CO2 changes through the seasonal cycle, by location on Earth, and over about 40 years and more specifically over 15 years. Students graph data in both the Northern and Southern Hemisphere and draw conclusions about hemispherical differences in CO2 release and uptake.

In this EarthLabs activity, learners explore the concepts of coral bleaching, bleaching hot spots and degree-heating weeks. Using data products from NOAA's Coral Reef Watch, students identify bleaching hot spots and degree-heating weeks around the globe as well as in the Florida Keys' Sombrero Reef to determine the impact higher-than-normal sea surface temperatures have on coral reefs.

This is a classroom activity about the forcing mechanisms for the most recent cold period: the Little Ice Age (1350-1850). Students receive data about tree ring records, solar activity, and volcanic eruptions during this time period. By comparing and contrasting time intervals when tree growth was at a minimum, solar activity was low, and major volcanic eruptions occurred, they draw conclusions about possible natural causes of climate change and identify factors that may indicate climate change.

Pages