Activity in which students investigate what causes the seasons by doing a series of kinesthetic modeling activities and readings. Activity includes educator background information about how to address common misconceptions about the seasons with students.

In this activity, students compare carbon dioxide (CO2) data from Mauna Loa Observatory, Barrow (Alaska), and the South Pole over the past 40 years to help them better understand what controls atmospheric carbon dioxide. This activity makes extensive use of Excel.

This is the ninth and final lesson in a series of lessons about climate change. This lesson focuses on the various activities that humans can do to mitigate the effects of climate change. This includes information on current and predicted CO2 emission scenarios across the globe, alternative energy sources, and how people are currently responding to climate change. Importantly, this lesson is motivating in showing students that they can make a difference.

This activity addresses naturally occurring climate change involving ENSO (El-NiÃo Southern Oscillation). In this activity, students play the role of a policy maker in Peru. First, they determine what sort of ENSO variation is occurring. Then, they must decide how to allocate Peru's resources to manage for possible weather-related problems.

In this activity students learn how Earth's energy balance is regulating climate. This activity is lesson 4 in the nine-lesson module Visualizing and Understanding the Science of Climate Change.

In this activity, students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.

In this hands-on activity, students explore whether rooftop gardens are a viable option for combating the urban heat island effect. Guiding question is: Can rooftop gardens reduce the temperature inside and outside houses?

In this classroom activity, students analyze visualizations and graphs that show the annual cycle of plant growth and decline. They explore patterns of annual change for the globe and several regions in each hemisphere that have different land cover and will match graphs that show annual green-up and green-down patterns with a specific land cover type.

Students use the GLOBE Student Data Archive and visualizations to display current temperatures on a map of the world. They explore the patterns in the temperature map, looking especially for differences between different regions and hemispheres and zoom in for a closer look at a region that has a high density of student reporting stations (such as the US and Europe). Students compare and contrast the patterns in these maps, looking for seasonal patterns.

In this activity, students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years. Stacked together, the overheads for the whole class show an increase on carbon dioxide over five years and annual variation driven by photosynthesis. This exercise enables students to practice basic quantitative skills and understand how important sampling intervals can be when studying changes over time. A goal is to see how small sample size may give incomplete picture of data.

Pages