In this audio slideshow, an ecologist from the University of Florida describes the radiocarbon dating technique that scientists use to determine the amount of carbon within the permafrost of the Arctic tundra. Understanding the rate of carbon released as permafrost thaws is necessary to understand how this positive feedback mechanism is contributing to climate change that may further increase global surface temperatures.

This activity develops students' understanding of climate by having them make in-depth examinations of historical climate patterns using both graphical and map image formats rather than presenting a general definition of climate. Students explore local climate in order to inform a pen pal what type of weather to expect during an upcoming visit. Students generate and explore a variety of graphs, charts, and map images and interpret them to develop an understanding of climate.

In this activity from the Deep Earth Academy, students divide into groups to read and discuss one of nine short articles (1-2 pages) about research done by the Ocean Drilling Program. These articles discuss our understanding about past climate based on collected data. These articles briefly describe the research conducted and the findings. Students use the information from the article to complete a write-up that they share with other students. An extension activity involves examining ocean drilling data using Google Earth.

This video, along with a background essay, focuses on impacts of climate change on the lives of Native Alaskans around Barrow, Alaska. Specific changes include the timing of the changes in the formation and breakout of sea ice and the impacts on subsistence living.

This video focuses on the science of climate change and its impacts on wildlife on land and in the sea, and their habitats in the U.S. There are short sections on walruses, coral reefs, migrating birds and their breeding grounds, freshwater fish, bees, etc. Video concludes with some discussion about solutions, including reduce/recyle/reuse, energy conservation, backyard habitats, citizen scientists.

This lesson explores El Nino by looking at sea surface temperature, sea surface height, and wind vectors in order to seek out any correlations there may be among these three variables, using the My NASA Data Live Access Server. The lesson guides the students through data representing the strong El Nino from 1997 to 1998. In this way, students will model the methods of researchers who bring their expertise to study integrated science questions.

This lesson plan engages students in a real-life exploration of climate change as it is affected by greenhouse emissions from vehicles. The aim of this activity is for students to realize the impact of vehicle use in their family and to give students the opportunity to brainstorm viable alternatives to this use.

This NASA animation of the Five-Year Average Global Temperature Anomalies from 1881 to 2009 shows how temperature anomalies have varied in the last 130 years. The color-coded map displays a long-term progression of changing global surface temperatures from 1881 to 2009. Dark red indicates the greatest warming and dark blue indicates the greatest cooling.

This is an interactive map of California and the Sierra Nevada mountains, showing projected variations in water stored in snowpack, from 1950 to 2090, assuming low or high emission scenarios over that period of time. Interactive can be adjusted to show different months of the year and various climate models, graphed by site.

This short video describes the Hestia project - a software tool and data model that provide visualizations of localized CO2 emissions from residential, commercial, and vehicle levels, as well as day versus night comparisons, in the city of Indianapolis.

Pages