One of a suite of online climate interactive simulations, this Greenhouse Gas Simulator uses the bathtub model to demonstrate how atmospheric concentrations of CO2 will continue to rise unless they are lowered to match the amount of CO2 that can be removed through natural processes.

This interactive graphic outlines the carbon cycle, with clickable text boxes that explain and elaborate each component.

This narrated slide presentation shows the carbon cycle, looking at various parts of this biogeochemical sequence by examining carbon reservoirs and how carbon is exchanged among them and the atmosphere.

This article and slide show from the New York Times, features several scientists from the University of Alaska, Fairbanks, who study the effects of thawing permafrost in Alaska.

This interactive shows the different components of the ocean biological pump, i.e., how carbon in the form of either plankton or particles moves into the ocean's depths. It illustrates the situation at the surface, 0-100 meters, 100-500 meters, and below 500 meters.

This interactive animation focuses on the carbon cycle and includes embedded videos and captioned images to provide greater clarification and detail of the cycle than would be available by a single static visual alone.

Two simple experiments/demonstrations show the role of plants in mitigating the acidification caused when CO2 is dissolved in water.

This short investigation from Carbo Europe explores how temperature relates to the solubility of carbon dioxide in water.

This interactive exposes students to Earth's atmospheric gases of oxygen, carbon dioxide, and ozone. As the user manipulates the interactive to increase or decrease the concentration of each gas, explanations and images are provided that explain and visualize what the Earth would be like in each scenario.

This simulation allows the user to project CO2 sources and sinks by adjusting the points on a graph and then running the simulation to see projections for the impact on atmospheric CO2 and global temperatures.

Pages