In this activity, students explore the increase in atmospheric carbon dioxide over the past 40 years with an interactive online model. They use the model and observations to estimate present emission rates and emission growth rates. The model is then used to estimate future levels of carbon dioxide using different future emission scenarios. These different scenarios are then linked by students to climate model predictions also used by the Intergovernmental Panel on Climate Change.

In this activity, students work in groups, plotting carbon dioxide concentrations over time on overheads and estimating the rate of change over five years. Stacked together, the overheads for the whole class show an increase on carbon dioxide over five years and annual variation driven by photosynthesis. This exercise enables students to practice basic quantitative skills and understand how important sampling intervals can be when studying changes over time. A goal is to see how small sample size may give incomplete picture of data.

In this video from the Polaris Project Website, American and Siberian university students participating in the project describe their research on permafrost.

This static visualization shows that the global carbon cycle is determined by the interactions of climate, the environment, and Earth's living systems at many levels, from molecular to global.

Students examine data from Mauna Loa to learn about CO2 in the atmosphere. The students also examine how atmospheric CO2 changes through the seasonal cycle, by location on Earth, and over about 40 years and more specifically over 15 years. Students graph data in both the Northern and Southern Hemisphere and draw conclusions about hemispherical differences in CO2 release and uptake.

This article and slide show from the New York Times, features several scientists from the University of Alaska, Fairbanks, who study the effects of thawing permafrost in Alaska.

Animations of CO2 concentration in the free troposphere, as simulated by NOAA's ESRL CarbonTracker.

This video documents how scientists, using marine algae, can study climate change in the past to help understand potential effects of climate change in the future.

This simulation allows the user to project CO2 sources and sinks by adjusting the points on a graph and then running the simulation to see projections for the impact on atmospheric CO2 and global temperatures.

This three-panel figure is an infographic showing how carbon and oxygen isotope ratios, temperature, and carbonate sediments have changed during the Palaeocene-Eocene Thermal Maximum. The figure caption provides sources to scientific articles from which this data was derived. A graphic visualization from the Intergovernmental Panel on Climate Change shows the rapid decrease in carbon isotope ratios that is indicative of a large increase in the atmospheric greenhouse gases CO2 and CH4, which was coincident with approximately 5C of global warming.

Pages