This video features a short animated sequence that illustrates the difference between young and old carbon released into the atmosphere from the consumption of food (young carbon) and the burning of fossil fuels (old carbon).

This video highlights the work of climate scientists in the Amazon who research the relationship between deforestation, construction of new dams, and increased amounts of greenhouse gases being exchanged between the biosphere and the atmosphere.

In this activity, students conduct a life cycle assessment of energy used and produced in ethanol production, and a life cycle assessment of carbon dioxide used and produced in ethanol production.

This video describes what black carbon is, where is comes from, and how it contributes to sea ice melt and global warming.

This video focuses on the science of climate change and its impacts on wildlife on land and in the sea, and their habitats in the U.S. There are short sections on walruses, coral reefs, migrating birds and their breeding grounds, freshwater fish, bees, etc. Video concludes with some discussion about solutions, including reduce/recyle/reuse, energy conservation, backyard habitats, citizen scientists.

This is a simulation that illustrates how temperature will be affected by global CO2 emission trajectories. It addresses the issue that even if global emissions begin to decrease, the atmospheric concentration of CO2 will continue to increase, resulting in increased global temperatures.

With this carbon/temperature interactive model, students investigate the role of atmospheric carbon in the greenhouse effect using a relationship between atmospheric carbon dioxide and global temperature.

This graphic depicts evidence for a human fingerprint on climate change based on multiple sets of independent observations. The graphic is available to study at three levels - basic, intermediate, and advanced understanding, with substantial support for students to investigate the evidence themselves and draw their own conclusions.

In this lab activity, students use a chemical indicator (bromothymol blue) to detect the presence of carbon dioxide in animal and plant respiration and in the burning of fossil fuels and its absence in the products of plant photosynthesis. After completing the five parts of this activity, students compare the colors of the chemical indicator in each part and interpret the results in terms of the qualitative importance of carbon sinks and sources.

In this activity, students compare carbon dioxide (CO2) data from Mauna Loa Observatory, Barrow (Alaska), and the South Pole over the past 40 years to help them better understand what controls atmospheric carbon dioxide. This activity makes extensive use of Excel.

Pages