With this carbon/temperature interactive model, students investigate the role of atmospheric carbon in the greenhouse effect using a relationship between atmospheric carbon dioxide and global temperature.

This visualization graphically displays temperature and CO2 concentration in the atmosphere as derived from ice core data from 400,000 years ago to 1950. The data originates from UNEP GRID Arendal's graphic library of CO2 levels from Vostok ice core.

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

Two graphs from the NASA Climate website illustrate the change in global surface temperature relative to 1951-1980 average temperatures. The NASA plot is annotated with temperature-impacting historic events, which nicely connect an otherwise challenging graphic to real-world events.

This figure, the famous Keeling Curve, shows the history of atmospheric carbon dioxide concentrations as directly measured at Mauna Loa, Hawaii. This curve is an essential piece of evidence that shows the increased greenhouse gases that cause recent increases in global temperatures.

This video production is a part of a four-panel report from the National Academies' America's Climate Choices project. The video maps out the realm of our accumulated knowledge regarding climate change and charts a path forward, urging that research on climate change enter a new era focused on the needs of decision makers.

This collection of photos from the NASA Climate website features images related to global change. Not all images show change caused directly by climate change and energy use, and descriptive captions indicate causes for change in most of the images.

This graph, based on key ice core data sets and recent monitoring programs, shows the variations in concentration of carbon dioxide (CO2) in the atmosphere during the last 400,000 years.

In this activity, students compare carbon dioxide (CO2) data from Mauna Loa Observatory, Barrow (Alaska), and the South Pole over the past 40 years to help them better understand what controls atmospheric carbon dioxide. This activity makes extensive use of Excel.

This lab exercise is designed to provide a basic understanding of a real-world scientific investigation. Learners are introduced to the concept of tropospheric ozone as an air pollutant due to human activities and burning of fossil fuel energy. The activity uses, analyzes, and visualizes data to investigate this air pollution and climate change problem, determines the season in which it commonly occurs, and communicates the analysis to others in a standard scientific format.

Pages