An interactive simulation of Earth's seasonal dynamics that includes the axial tilt and other aspects of Earth's annual cycle.

This is part of a larger lab from the University of Nebraska at Lincoln: http://astro.unl.edu/naap/motion1/motion1.html

This lesson is a lab in which students use thermometers, white and dark paper, and lamps to measure differences in albedo between the light and dark materials. Connections are made to albedo in Antarctica.

Students investigate passive solar building design with a focus on heating. Insulation, window placement, thermal mass, surface colors, and site orientation are addressed in the background materials and design preparation. Students test their projects for thermal gains and losses during a simulated day and night then compare designs with other teams for suggestions for improvements.

In this activity, students develop an understanding of the relationship between natural phenomena, weather, and climate change: the study known as phenology. In addition, they learn how cultural events are tied to the timing of seasonal events. Students brainstorm annual natural phenomena that are tied to seasonal weather changes. Next, they receive information regarding the Japanese springtime festival of Hanami, celebrating the appearance of cherry blossoms. Students plot and interpret average bloom date data from over the past 1100 years.

This activity teaches students about the albedo of surfaces and how it relates to the ice-albedo feedback effect. During an experiment, students observe the albedo of two different colored surfaces by measuring the temperature change of a white and black surface under a lamp.

Activity in which students investigate what causes the seasons by doing a series of kinesthetic modeling activities and readings. Activity includes educator background information about how to address common misconceptions about the seasons with students.

This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

This visualization graphically displays temperature and CO2 concentration in the atmosphere as derived from ice core data from 400,000 years ago to 1950. The data originates from UNEP GRID Arendal's graphic library of CO2 levels from Vostok ice core.

This interactive contains four animated slides that introduce the greenhouse effect. An additional animation offers to 'explore more'.

This NASA video discusses the impacts of the sun's energy, Earth's reflectance and greenhouse gases on the Earth System.

Pages

Hide [X]