In this lesson, students examine and interpret varied observational datasets and are asked to determine whether the data supports or does not support the statement: climate change is occurring in Colorado.

For this lesson, the guiding Concept Question is: What is climate change and how does climate relate to greenhouse gas concentrations over time? This activity is the second lesson in a nine-lesson module 'Visualizing and Understanding the Science of Climate Change' produced by the International Year of Chemistry project (2011).

This is the first of nine lessons in the "Visualizing and Understanding the Science of Climate Change" website. This lesson is an introduction to Earth's climate and covers key principles regarding Earth's unique climate, atmosphere, and regional and temporal climate differences.

In this activity, students examine images of alpine glaciers to develop an understanding of how glaciers respond to climate change. They record, discuss, and interpret their observations. They consider explanations for changes in the size and position of glaciers from around the world. They develop an understanding that the melting (retreat) of glaciers is occurring simultaneously on different continents around the world, and, thus, they represent evidence of global climate change.

The activity takes a hands-on approach to understanding El NiÃo by physically showing and feeling the process. It consists of an El NiÃo demo to be performed by the teacher and observed by the class as well as an experiment to be conducted by the students themselves individually or in pairs to illustrate the connection between water temperature and atmospheric temperature. Students are asked to make conclusions based on their findings and then examine the chain of events stemming from El NiÃo.

In this learning activity, students use a web-based geologic timeline to examine temperature, CO2 concentration, and ice cover data to investigate how climate has changed during the last 715 million years.

In this activity, students reconstruct past climates using lake varves as a proxy to interpret long-term climate patterns and to understand annual sediment deposition and how it relates to weather and climate patterns.

In this activity, students use Google Earth to explore global temperature changes during a recent 50 - 58 year period. They also explore, analyze, and interpret climate patterns of 13 different cities, and analyze differences between weather and climate patterns.

In this activity, students utilize a set of photographs and a 30 minute video on weather to investigate extreme weather events. They are posed with a series of questions that ask them to identify conditions predictive of these events, and record them on a worksheet. Climate and weather concepts defined.

In this lab activity, students use a chemical indicator (bromothymol blue) to detect the presence of carbon dioxide in animal and plant respiration and in the burning of fossil fuels and its absence in the products of plant photosynthesis. After completing the five parts of this activity, students compare the colors of the chemical indicator in each part and interpret the results in terms of the qualitative importance of carbon sinks and sources.

Pages