This is a video overview of the history of climate science, with the goal of debunking the idea that in the 1970s, climate scientists were predicting global cooling.

This podcast features current research of Harvard scientists monitoring the flow of carbon through the forest, an accompanying essay, and an audio slideshow that focuses on land changes in the region over the past centuries.

In this activity, students reconstruct past climates using lake varves as a proxy to interpret long-term climate patterns and to understand annual sediment deposition and how it relates to weather and climate patterns.

This video describes why tropical ice cores are important and provide different information than polar ice cores, why getting them now is important (they are disappearing), and how scientists get them. The work of glaciologist Lonnie Thompson is featured, with a focus on his work collecting cores of ice from high mountain glaciers that contain significant data about past climate change.

This interactive National Weather Service interactive visualization includes outlook maps for 6-10 day, 8-14 day, 1 month, and 3 month temperature and precipitation patterns in the US, as well as a hazards outlook and drought information.

A collection of repeat photography of glaciers from the National Snow and Ice Data Center (NSIDC). The photos are taken years apart at or near the same location, illustrating how dramatically glacier positions can change even over a relatively short period in geological time: 60 to 100 years. Background essay and discussion questions are included.

In this activity students use a series of Landsat images from 1975 to 2005 to examine changes in land cover and abundance of vegetation in the summer (peak abundance) and relate these changes to climate conditions.

This video shows the potential of dendrochronology (tree ring study) to shed light on climatic conditions of the past. Scientists at Columbia University's Lamont-Doherty Earth Observatory read the growth rings of ancient trees to understand the history and workings of the monsoon. In addition, historical accounts are correlated with data from tree rings to better understand these events.

In this activity, students are guided through the process of locating and graphing web-based environmental data that has been collected by GLOBE Program participants using actual data collected by students in Pennsylvania and comparing them to their local climatic boundary conditions. This activity highlights the opportunities for using GLOBE data to introduce basic concepts of Earth system science.

In this activity, students learn about the tools and methods paleoclimatologists use to reconstruct past climates. In constructing sediment cores themselves, students will achieve a very good understanding of the sedimentological interpretation of past climates that scientists can draw from cores.

Pages

Hide [X]