This is an animated interactive simulation that illustrates differential solar heating on a surface in full sunlight versus in the shade.

This interactive contains four animated slides that introduce the greenhouse effect. An additional animation offers to 'explore more'.

This animated visualization of precession, eccentricity, and obliquity is simple and straightforward, provides text explanations, and is a good starting place for those new to Milankovitch cycles.

This NASA video reviews the role of the sun in driving the climate system. It uses colorful animations to illustrate Earth's energy balance and how increased greenhouse gases are creating an imbalance in the energy budget, leading to warming. The video also reviews how the NASA satellite program collects data on the sun.

Students use the GLOBE Student Data Archive and visualizations to display current temperatures on a map of the world. They explore the patterns in the temperature map, looking especially for differences between different regions and hemispheres and zoom in for a closer look at a region that has a high density of student reporting stations (such as the US and Europe). Students compare and contrast the patterns in these maps, looking for seasonal patterns.

An interactive that illustrates the relationships between the axial tilt of the Earth, latitude, and temperature. Several data sets (including temperature, Sun-Earth distance, daylight hours) can be collected using this interactive.

This activity engages learners to investigate the impact of Earth's tilt and the angle of solar insolation as the reason for seasons by doing a series of hands-on activities that include scale models. Students plot the path of the Sun's apparent movement across the sky on two days separated by three months of time.

This animation demonstrates the changing declination of the sun with a time-lapse animation. It shows how the shadow of a building changes over the course of a year as the declination of the sun changes.

This activity introduces students to different forms of energy, energy transformations, energy storage, and the flow of energy through systems. Students learn that most energy can be traced back to nuclear fusion on the sun.

Students perform a lab to explore how the color of materials at the Earth's surface affect the amount of warming. Topics covered include developing a hypothesis, collecting data, and making interpretations to explain why dark colored materials become hotter.

Pages