In this hands-on activity, participants learn the characteristics of the five layers of the atmosphere and make illustrations to represent them. They roll the drawings and place them in clear plastic cylinders, and then stack the cylinders to make a model column of the atmosphere.

In this activity, students chart temperature changes over time in Antarctica's paleoclimate history by reading rock cores. Students use their data to create an interactive display illustrating how Antarctica's climate timeline can be interpreted from ANDRILL rock cores.

This simulation provides scenarios for exploring the principles of climate dynamics from a multi-disciplinary perspective. Inter-connections among climate issues, public stakeholders and the governance spheres are investigated through creative simulations designed to support learners' understanding of international climate change negotiations.

This activity focuses on wind energy concepts, which are introduced through a Reading Passage and by answering assessment questions. Students construct and test a windmill to observe how design and position affect the electrical energy produced.

In this activity, students will learn the difference between sea ice and glaciers in relation to sea level rise. They will create and explore topographic maps as a means of studying sea level rise and how it will affect Alaska's coastline.

Students perform a lab to explore how the color of materials at the Earth's surface affect the amount of warming. Topics covered include developing a hypothesis, collecting data, and making interpretations to explain why dark colored materials become hotter.

This activity engages learners to make a model of sediment cores using different kinds of glass beads and sand. They learn how to examine the types, numbers, and conditions of diatom skeletons in the model sediment cores and tell something about the hypothetical paleoclimate that existed when they were deposited. The students get to be climate detectives.

This short series of lessons has multiple facets that may require several class periods to implement. Lessons explore the importance of engineering solutions to the management of climate change, by brainstorming ways to remove CO2 from the atmosphere and store it in a form that does not promote global warming. Students can explore engineering careers and experience learning through the scientific process.

Hide [X]