This simulation is an interdisciplinary timeline that has been developed to show key events in the climatic history of the planet, alongside events in human history.

Video and animations of sea level from NASA's Climate website. Since 1992, NASA and CNES have studied sea surface topography as a proxy for ocean temperatures. NASA Missions TOPEX/Poseidon, Jason 1 and Jason 2 have been useful in predicting major climate, weather, and geologic events including El Nino, La Nina, Hurricane Katrina, and the Indian Ocean Tsunami.

Bell Telephone Science Hour produced this video in 1958, explaining how the production of CO2 from factories and automobiles is causing the atmosphere to warm, melting the polar ice caps, and causing the sea level to rise.

This activity engages learners to make a model of sediment cores using different kinds of glass beads and sand. They learn how to examine the types, numbers, and conditions of diatom skeletons in the model sediment cores and tell something about the hypothetical paleoclimate that existed when they were deposited. The students get to be climate detectives.

This interactive shows the extent of the killing of lodgepole pine trees in western Canada. The spread of pine beetle throughout British Columbia has devastated the lodgepole pine forests there. This animation shows the spread of the beetle and the increasing numbers of trees affected from 1999-2008 and predicts the spread up until 2015.

This interactive visualization from the NASA Earth Observatory website compares Arctic sea ice minimum extent from 1984 to that of 2012.

In this activity, students will learn the difference between sea ice and glaciers in relation to sea level rise. They will create and explore topographic maps as a means of studying sea level rise and how it will affect Alaska's coastline.

This short series of lessons has multiple facets that may require several class periods to implement. Lessons explore the importance of engineering solutions to the management of climate change, by brainstorming ways to remove CO2 from the atmosphere and store it in a form that does not promote global warming. Students can explore engineering careers and experience learning through the scientific process.

Students perform a lab to explore how the color of materials at the Earth's surface affect the amount of warming. Topics covered include developing a hypothesis, collecting data, and making interpretations to explain why dark colored materials become hotter.

A set of eight photographs compiled into a series of slides explain how urban areas are facing challenges in keeping both their infrastructure and their residents cool as global temperatures rise. Chicago is tackling that problem with a green design makeover. This report is part of PBS's Coping with Climate Change series and could challenge students to consider engineering designs to help their own cities be greener.

Pages