This video is the second of a three-video series in the Sea Change project, which follows the work of Dr. Maureen Raymo, paleogeologist at Columbia University's Lamont-Doherty Earth Observatory, who travels with fellow researchers to Australia in search of evidence of sea level that was once higher than it is today.

This video describes why tropical ice cores are important and provide different information than polar ice cores, why getting them now is important (they are disappearing), and how scientists get them. The work of glaciologist Lonnie Thompson is featured, with a focus on his work collecting cores of ice from high mountain glaciers that contain significant data about past climate change.

This teaching activity is an introduction to how ice cores from the cryosphere are used as indicators and record-keepers of climate change as well as how climate change will affect the cryosphere. Students learn through a guided web exercise how scientists analyze ice cores to learn about past climate conditions, how melting sea and land ice will contribute to sea level rise, and what areas of the world would be at risk if Antarctic and/or Greenland ice sheets were to melt away.

Two graphs from the NASA Climate website illustrate the change in global surface temperature relative to 1951-1980 average temperatures. The NASA plot is annotated with temperature-impacting historic events, which nicely connect an otherwise challenging graphic to real-world events.

This video is part of the Climate Science in a Nutshell series. This short, animated video looks at evidence of a rapidly warming planet. It discusses how air bubbles in ice cores can be used to estimate Earth's average air temperature for thousands of years and how direct measurements document air temperatures from 1880.

This is a simulation that illustrates how temperature will be affected by global CO2 emission trajectories. It addresses the issue that even if global emissions begin to decrease, the atmospheric concentration of CO2 will continue to increase, resulting in increased global temperatures.

This video provides background information and teaching tips about the history and relevance of phenology and seasonal observations of plants and animals within the context of rural Wisconsin.

In this activity, students download historic temperature datasets and then graph and compare with different locations. As an extension, students can download and examine data sets for other sites to compare the variability of changes at different distinct locations, and it is at this stage where learning can be individualized and very meaningful.

This video follows biologist Gretchen Hofmann as she studies the effects of ocean acidification on sea urchin larvae.

This lesson is an investigation of the impact of climate change on the phenology of a variety of taxa, including migrating birds and hibernating animals in the Colorado Rockies. Students analyze 40 years of data collected by Billy Barr from the Rocky Mountain Biological Laboratory.

Pages