This visualization illustrates the carbon cycle throughout the oceanic zones, beginning at the surface and traveling to the deep. The concept map-like connections encourage students to link the abiotic and biotic interactions within the oceanic food web.

This series of activities introduce students to polar oceanography, polar climate and how events that occur in oceans thousands of kilometers away affect them and the mid-latitudes using maps, images, lab experiments and online data tools. Students explore how conditions are changing in the Polar Regions and the possible impacts upon life in the United States and other mid-latitude nations.

In this lesson, students explore several facets of the impact of volcanic eruptions on the atmosphere. Students analyze three types of visual information: a graph of aerosol optical depth v. global temperature, a global map with temperature anomalies, and an ash plume photograph. In the hands-on activity, students use math to determine the rate and estimated time of arrival of an ash plume at an airfield.

In this activity students learn how Earth's energy balance is regulating climate. This activity is lesson 4 in the nine-lesson module Visualizing and Understanding the Science of Climate Change.

A simplified representation of the terrestrial carbon cycle side by side with the ocean carbon cycle. Fluxes and reservoirs expressed in gigatons are included.

This interactive exposes students to Earth's atmospheric gases of oxygen, carbon dioxide, and ozone. As the user manipulates the interactive to increase or decrease the concentration of each gas, explanations and images are provided that explain and visualize what the Earth would be like in each scenario.

This activity introduces students to visualization capabilities available through NASA's Earth Observatory, global map collection, NASA NEO and ImageJ. Using these tools, students build several animations of satellite data that illustrate carbon pathways through the Earth system.

This animated visualization was created for the planetarium film 'Dynamic Earth'. It illustrates the trail of energy that flows from atmospheric wind currents to ocean currents.

This video illustrates how atmospheric particles, or aerosols (such as black carbon, sulfates, dust, fog), can affect the energy balance of Earth regionally, and the implications for surface temperature warming and cooling.

This short cartoon video uses a simple baseball analogy (steroid use increases probability of hitting home runs) to explain how small increases in greenhouse gases can cause global temperature changes and increase the probability of extreme weather events.

Pages