This is a multi-faceted activity that offers students a variety of opportunities to learn about permafrost through an important sink and source of greenhouse gas (methane), about which most students living in lower latitudes know little.

This is a video that discusses how climate feedbacks influence global warming.

In this hands-on activity, participants learn the characteristics of the five layers of the atmosphere and make illustrations to represent them. They roll the drawings and place them in clear plastic cylinders, and then stack the cylinders to make a model column of the atmosphere.

This video describes what black carbon is, where is comes from, and how it contributes to sea ice melt and global warming.

This short video discusses where carbon dioxide, the gas that is mainly responsible for warming up our planet and changing the climate, comes from. It discusses how the rise in atmospheric carbon dioxide comes directly from the burning of fossil fuels and indirectly from the human need for energy.

This qualitative graphic illustrates the various factors that affect the amount of solar radiation hitting or being absorbed by Earth's surface such as aerosols, clouds, and albedo.

In this experiment, students will observe two model atmospheres: one with normal atmospheric composition and another with an elevated concentration of carbon dioxide. These two contained atmospheres will be exposed to light energy from a sunny window or from a lamp. The carbon dioxide is produced by a simple reaction and tested using bromothymol blue (BTB).

This activity covers the role that the oceans may play in climate change and how climate change may affect the oceans. It is lesson 8 in a nine-lesson module Visualizing and Understanding the Science of Climate Change.

In this activity students learn how Earth's energy balance is regulating climate. This activity is lesson 4 in the nine-lesson module Visualizing and Understanding the Science of Climate Change.

This visualization illustrates the carbon cycle throughout the oceanic zones, beginning at the surface and traveling to the deep. The concept map-like connections encourage students to link the abiotic and biotic interactions within the oceanic food web.

Pages